

2.3 Realtime Data Processing

Realtime Data Processing

Module summary	
Module code: STM230	
Module coordinator: Prof. DrIng. Christian Langen	
Credits (ECTS): 6	
Semester: 2	
Pre-requisites with regard to content:	
Successful completion of "Control Theory" which is part of the module "Analogue Signal Processin	g″
Pre-requisites according to the examination regulations:	
Competences:	
Course Aim:	
To produce students who can design digital signal processing (DSP) and digital control (DC) system	is and can
create commercially-viable digital signal processing and control applications using high-performan	ice and
energy-efficient microprocessors.	
Specific Learning Outcomes:	
Students have knowledge and understanding of	
- DSP and DC basic concepts such as sampling, reconstruction and aliasing.	
- Fundamental filtering algorithms such as FIR, IIR, FFT and adaptive filters.	
 Microprocessors as low-power computing platforms. 	
- DSP and DC software programming basics and principles.	
By the intellectual skills:	
- Ability to choose between different DSP and DC algorithms for different applications.	
 Ability to use different design methods to achieve better results. 	
- Ability to evaluate experimental results (e.g. quality, speed, power) and correlate them with	
the corresponding designing and programming techniques.	
Practical abilities:	
On successful completion of this module the student will be able to:	
 Implement DSP and DC and design methods on microprocessors. 	
- Use commercial hardware and software tools to develop real-time DSP and DC applications.	
Assessment: Written exam, 120 minutes	
Course: Real-Time Signal Processors with Lab	
Module code: STM231	
Lecturer: Prof. DrIng. Christian Langen	
Contact hours: 30	
Semester of delivery: Yearly (winter)	
Type/mode: Lecture with lab and seminar projects, papers and presentations	
Language of instruction: English	
Content:	
Part 1 – Lecture:	
 Discrete-Time Signals and Systems: Convolution and Correlation 	
 Sampling, Reconstruction and Aliasing 	
 Review of Complex Exponentials and Fourier Analysis 	

- Time and Frequency Domains
- Z-Transform: Time and Frequency Domains
- FIR Filters: Moving Average Filters, Window Method of Design
- IIR Filters: Impulse Invariant and Bilinear Methods of Design, Simple Design Example
- Fast Fourier Transform: Review if Fourier Transforms, Derivation of Radix-2 FFT Algorithm
- Adaptive Filters: Prediction and System Identifications, Equalisation and Noise Cancellation

Part 2 – Lab Exercises

- Introduction to the Microprocessor Hardware and Development Tool Chain
- Analog Inputs and Outputs, Polling, Interrupts and Direct Memory Access (DMA) for Data Input/
- Output.
- Non-Recursive Systems. Example: Delay
- Recursive Systems. Example: Echo
- Non-Recursive Filters with Finite Impulse Response (FIR)
- Recursive Filters with Infinite Impulse Response (IIR)
- Fast Fourier Transform (FFT)
- 8.) Adaptive Filters. Least Mean Square (LMS) Algorithm

Recommended reading:

- 1.) Chassaing, Rulph; Reay, Donald: Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley 2008.
- 2.) Reay, Donald: Digital Signal Processing and Applications with the OMAP-L138 eXperimenter. Wiley 2012.
- 3.) Kuo, Sen M.; Lee, Bob H.; Tian, Wenshun: Real-Time Digital Signal Processing. Fundamentals, Implementations and Applications. Wiley 2013.
- 4.) Reay, Donald: Digital Signal Processing Usingn the ARM Cortex-M4. Wiley 2016.
- 5.) Unsalan, Cem; Yücel, M. Erkin; Gürhan, D. Neniz: Digital SIgnal Processing using ARM Cortex-M Based Microcontrollers. ARM Education Media 2018.

Comments: Project, presentation and paper assessment preferred!

Course: Digital Control Systems

Module code: STM232

Lecturer: Prof. Dr.-Ing. Frieder Keller/ Prof. Dr. Samuel de Lucena

Contact hours: 30

Semester of delivery: Yearly (winter)

Type/mode: lecture / mandatory

Language of instruction: English

Contents:

- Digital Control compared to Analogue Control
- z-Transform
- 2.1 Definition of the z-transform
- 2.2 Properties of the z-transform
- The inverse z-transform
- z-transform and difference equations
- Stability of discrete-time systems
- PID control algorithms
- Transformation from analogue to digital
- Simulation of Digital Control Loops
- Parameter Optimization with MATLAB
- Deadbeat control algorithms
- System Identification

Recommended reading:

- 1. Zilouchian, Ali / Jamshidi, Mo Intelligent control systems using soft computing methodologies
- 2. Ogata, Katsuhiko Discrete-Time Control Systems
- 3. Nise, Norman S. Control systems engineering New York: Wiley 3rd Ed. 2000

Comments: