1.1 Advanced Physics

Module title: Advanced Physics

Module summary
Module code: STM110
Module coordinator: Prof. Dr. Roland Görlich
Credits (ECTS): 6
Semester: 1
Pre-requisites with regard to content: Basic knowledge in mathematics and physics (Bachelor level)
Pre-requisites according to the examination regulations:
Competencies: After successful completion of the module
Students understand the causes and effects of electromagnetic interactions. They know the phenomena of
classical electrodynamics and understand their general mathematical descriptions (Maxwell laws) as well as
their applications
 Students have an understanding of the quantized form of electromagnetic waves (photons) and their
interaction with matter
 Students have knowledge of the description of quantum mechanical systems
Students will be able to understand and analyze sensor principles based on theoretical models, giving them a
deeper understanding of the underlying physical mechanisms
Students are able to network different phenomena with the help of theoretical models and thus structure the
field of knowledge
 Students are also qualified for more ambitious tasks in the development of sensors
• In the course of exercises, students are enabled to present and transport topics from the lecture, to realize and
discuss problems and to solve them methodically. In addition, they also acquire social skills in the environment
of learning situations.
Assessment:
Written examination 120 minutes with mark
Course: Physics
Module code: STM112
Lecturer: Dr. Peter Weidler
Contact hours: 2 lecture hours per week
Semester of delivery: yearly in summer semester
Type/mode: lecture including tutorial
Language of instruction: English
– Content:
 Vector Analysis / scalar and vector potentials
 Electrostatics / Electromagnetic Fields
 Maxwell Equations / Solution of Maxwell Equations
 Recommended reading:
 Feynman, Leighton, Sands: Lectures on Physics Electromagnetism and Matter, Vol. II, Part I, Addison Wesley, R. Oldenbourg Verlag
 Serway, Jewett: Physics for Scientists and Engineers, Brooks/Cole Thomson
 Griffiths: Introduction to Electrodynamics (4th ed.) Pearson Cambridge University Press, 2017
 Shadowitz, Albert: The electromagnetic field, Dover Publications, 1975
Comments:
The lecture requires good knowledge in mathematics: calculus and basics in analytical geometry

ourse: Solid State Physics
Nodule code: STM113
ecturer: Prof. Dr. Roland Görlich
ontact hours: 2 lecture hours per week
emester of delivery: yearly in summer semester
ype/mode: lecture and exercise / optional
anguage of instruction: English
ontent:
Aspects of "Modern Physics" (Quantum Theory)
Photons and optical sensors, LASER
Principles of solid-state theory, especially in the field of semiconductors
Diffusion theory based on master equations
ecommended reading:
Lecture notes and exercise sheets
Feynman, Richard Phillips: The Feynman Lectures on Physics, 3 Vols.*, Addison-Wesley
Sternheim, Morton M.: General physics, New York, John Wiley, 1991
Kittel, Charles: Introduction to Solid State Physics, John Wiley & Sons, Inc., 2005
Kittel, Charles; Kroemer, Herbert: Thermal Physics, W.H. Freeman and Company New York,
Ashcroft, Neil W.; Mermin, N. David: Solid State Physics, Harcourt Brace College Publisher
Coleman, Charles C.: Modern Physics for Semiconductor Science, WILEY-VCH
Sze, S.M.: Semiconductor devices, Wiley, 2002
Bird, R. Byron; Stewart, Warren E.; Lightfood, Edwin N.: Transport Phenomena, John Wiley & Sons, Inc.
omments: