

Bachelor Thesis

Karlsruhe, 29/03/2022

The Chairman of the examination committee

Prof. Dr. Heiko Körner

Name:

Topic:

Fabian Rapp

Development of an App to record RGBD Data for AI-based
Diagnosis and Monitoring of Infant Head Deformation.

Place of work: inovex GmbH, Karlsruhe

Supervisor:

Co-examiner:

Deadline:

Prof. Dr.-Ing. Laubenheimer

Prof. Dr.-Ing. Vogelsang

30/06/2022

Declaration of Authorship

Hereby, I declare that I have composed the presented thesis independently on my own
and without any other resources than the ones indicated. All thoughts taken directly or
indirectly from external sources are properly denoted as such.

Karlsruhe, July 1, 2022 .

ii

Abstract

Up to 20 percent of all infants under the age of one su�er from an asymmetric head de-
formation that can be diagnosed by a physical therapist using a calliper to measure the
infant’s head. However, this technique is prone to human error in terms of accuracy. In
this thesis, a technical prototype that explores a smartphone-based diagnostic technique
by creating a 3Dmodel of the infants’ head, is further developed. The RGBD data for this
3D model is captured with the TrueDepth camera system on the front of iPhones. Due
to the camera system’s location, the iPhone screen is turned away from the user, which
poses a challenge to the user to correctly position the device when taking a scan.
In this thesis, the technical prototype is developed into an iOS app that provides posi-
tioning and progress feedback so that the user can take a scan despite the described
challenge. On top of that, the app is designed to be easy-to-use and intuitive.
The e�ectiveness of the feedback concept and the general usability of the app is evalu-
ated by a team of physical therapists that test the app in a real-life setting. These tests
showed that the developed feedback concept indeed helped the user to take a good scan
without properly seeing the screen. Giving feedback about the distance to the head and
the progress of the scan was perceived as very e�ective. The feedback about how to po-
sition the iPhone in a two-dimensional way was more di�cult to follow and might need
further development.

iii

Contents

List of Figures vi

Acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 1
1.3 Relevance and Importance . 2
1.4 Objective and Research Question . 3
1.5 Overview of the Structure . 4

2 Basics 5
2.1 SwiftUI . 5
2.2 Metal . 11
2.3 Functionality of the TrueDepth camera system 13
2.4 Inclusion of OpenCV in an iOS Xcode Project 14

3 Setup and Concept 16
3.1 Prerequisites . 16
3.2 Preconditions . 16
3.3 User Experience Concept . 22
3.4 Usage Scenario . 35

4 Implementation - Views and Logic 37
4.1 What all views have in common . 37
4.2 HomeView . 39
4.3 ScanInstructionsView . 42
4.4 ScanView . 43
4.5 PatientMetaDataView . 46
4.6 ScanRatingView . 48
4.7 ScanReplaySelectionView . 49

iv

Contents

4.8 ScanReplayView . 52
4.9 FileView . 53
4.10 RenameFileView . 55
4.11 SettingsView . 56

5 Testing and Evaluation 59
5.1 Collected data of the scan ratings . 59
5.2 Results of the in-person interview . 61
5.3 Combining the ScanRatingView data and the interviews 63

6 Conclusion and Outlook 64
6.1 Conclusion . 64
6.2 Outlook . 65

Bibliography 66

Attachments 70
1 Rating data collected through the ScanRatingView 70
2 Notes from the physical therapist interview 1 71
3 Notes from the physical therapist interview 2 71
4 Notes from the physical therapist interview 2 72
5 Notes from the physical therapist interview 2 73

v

List of Figures

1.1 A doll wearing a cap with markers that was used for testing. 2

2.1 A view called ContentView that is made up of two vertically aligned Text
elements. The yellow lines show the SwiftUI elements. 6

2.2 A vertical stack containing two colored text elements with a preview on
the right. 6

2.3 An example for using the property wrapper @State, including a diagram. . 7
2.4 Metal rendering process based on [33], [6], [1] 12
2.5 The TrueDepth camera system of the iPhone X [2] 13
2.6 An example of an ArUco marker 1 . 14

3.1 Screenshot of the initial technical prototype 17
3.2 Most important �les in the technical prototype 18
3.3 iOS system error vibration pattern . 26
3.4 First feedback mechanism attempt . 26
3.5 custom error vibration pattern . 27
3.6 iOS system success vibration pattern . 28
3.7 Determine 2D position of the head within the recorded image 32
3.8 Determine 2D position of the head within the recorded image 34

4.1 All main views of the app. The arrows show the navigation paths. 37
4.2 The three di�erent button designs in the app 39
4.4 The necessary components to generate a custom haptic pattern [14] . . . 43
4.6 The communication from backend to fronted for providing feedback . . . 45
4.10 Constellation for displaying a point cloud that caused a retain cycle 52
4.14 SettingsView . 57

5.1 Evaluation of the data collected through the ScanRatingView 60

1 All the scan ratings from the quantitative testing in the ScanRatingView. . 70

vi

Acronyms

CVAI Cranial Vault Asymmetry Index.

GPU Graphics Processing Unit.

IDE Integrated Development Environment.
ISRG Intelligent Systems Research Group.

RGBD Red Green Blue Depth.

vii

1 Introduction

1.1 Motivation

Up to 20 per cent of all infants are a�ected by a head deformation, medically referred
to as plagiocephaly [41]. Plagiocephaly is an asymmetric deformation of the skull of an
infant which mostly develops due to a preferred sleeping position of the infant. As the
skull is still �exible at this stage of their development deformations can develop and need
to be treated before their skull starts growing together and hardens. Correct treatment
within the�rst eightmonths of their life is e�ective [41]. Depending on the severity of the
plagiocephaly there are di�erent treatment possibilities ranging from a simple change of
sleeping positions to speci�cally formed pillows to helmet therapy [36]. If this condition
remains untreated it leads to impairments in the sense of balance because of the shift
of the ears and might also a�ect parts of the brain [41]. The most common technique
to diagnose plagiocephaly is to use a calliper to measure the diagonal lengths of each
side of the head and use these measurements to calculate the Cranial Vault Asymmetry
Index (CVAI) which de�nes the severity of the plagiocephaly. However, due to human
error, these measurements may not be 100% correct [36]. Based on an existing technical
prototype it is the goal of this thesis to further develop an iOS application that enables a
user to diagnose plagiocephaly and monitor the e�ectiveness of the treatment. The app
performs a 3D reconstruction of the infant’s head by utilizing depth information which is
captured with the TrueDepth camera system of the iPhone.

1.2 Context

This bachelor thesis is conducted as part of the research project InferMod3D which is
led by the Intelligent Systems Research Group (ISRG) of the University of Applied Sci-
ences Karlsruhe in cooperation of the companies inovex and Varilag. This project started
in 2020 and is estimated to terminate in 2022. It is funded by the Ministry of Science,
Research and Arts of Baden-Württemberg. The partner company Varilag is a physical
therapy company that specializes in treating plagiocephaly with a specially designed pil-

1

1 Introduction

low to control the sleeping position of an infant and therefore reverse the deformation of
the head. Varilag is also the company that came up with the idea for a smartphone-based
diagnosis and monitoring solution. The ISRG is leading this research project and is also
responsible for the algorithms to compute a 3D reconstruction of the head with point
clouds and for an initial prototype of the app. Finally, inovex is an IT service provider that
o�ers its services in the areas of applications, analytics and infrastructure, which include
mobile apps, web frontend, backend, data science etc. It has seven locations across Ger-
many with 450 employees. In this research project, inovex will support the development
of the mobile application.

1.3 Relevance and Importance

The goal of the entire research project is to develop an app that allows both physical
therapists and parents to diagnose and monitor plagiocephaly with just their iPhones
equipped with FaceID. Eventually, the aim is to start a clinical trial to medically certify the
app which means the app can be prescribed by doctors to their patients. This would be
the �rst medically certi�ed app for diagnosing andmonitoring plagiocephaly. The version

Figure 1.1: A doll wearing a cap with markers that was used for testing.

of the app that is developedwithin the scope of this thesis is amajor step toward that goal
as it serves the purpose of collecting large amounts of data of infant head deformations to
further train amodel. Thismodel enables a precise calculation of the CVAI. On top of that,
a smartphone-based solution is completely non-invasive. Creating a 3D model of the
infant’s head with other medical tools most times requires Computed Tomography (CT)
and NuclearMagnetic Resonance Imaging (MRI)[4]. While being extremely accurate they
bear the disadvantage that the patient has to remain completely still. As the patient in the
case of plagiocephaly is an infant that can become a di�cult undertaking and therefore

2

1 Introduction

sedation of the infant is usually needed.
Regardless of the version of the app, the great advantage of it is its accessibility to a lot
of people and its ease of use.
First, iPhones with FaceID sensors have been available since late 2017, so at the time of
writing this thesis, for more than four years, which improves the likeliness that a physical
therapist or a parent owns such a device. This means that a lot of people already have all
the equipment in their pockets. And for the �rst version of the app, the physical therapist
already possesses the most expensive part of the necessary equipment. On top of that,
the infant needs to wear a special cap during the scanning process (see 1.1).
Second, a user-friendly application also provides the bene�t that no special training is
needed for its use, which means that both physical therapists and parents can use it. For
a future version of the app, this also reduces the number of necessary appointments that
have to bemade, as the parents can nowmonitor the e�ectiveness of the treatment from
the comfort of their own home and don’t need to visit a physical therapist each time.

1.4 Objective and Research Question

The objective of this thesis is to signi�cantly enhance an iOS application that allows phys-
ical therapists to diagnose andmonitor plagiocephaly. This includes the development and
implementation of a user experience concept to provide feedback to the user while per-
forming a scan. The app is intended to be ready-to-use and easy-to-operate by a physical
therapist to collect data from infant heads, which will then be further used for training
3D models in the research project. This app allows a user to record a scan and get real-
time feedback during the scan regarding its quality. Furthermore, a user can select a
previously recorded scan for replay. If needed there is also the possibility to rename the
�lenames of the recorded scans.
This thesis aims to answer the following research questions:
How can an iPhone provide feedback to a user, so that a user makes a better scan of the
head of a potentially not cooperating infant?
What is a highly usable user experience design implemented by an easy-to-use user in-
terface of an iOS app that is used while working with infants and operated by parents
and physical therapists?

3

1 Introduction

1.5 Overview of the Structure

The �rst chapter of this thesis serves as a motivation for the entire project, while also
giving an overview of the context in which this thesis is conducted in and what it aims to
achieve.
The basics chapter will provide an overview and basic understanding of the framework
SwiftUI and the Metal-API from Apple. This knowledge is necessary to understand how
the views and the 3D-point clouds are implemented. On top of that, it will outline further
basic information that is needed for the understanding and setup of this project.
The following chapter describes the preconditions that this thesis builds upon. This en-
sures a clear picture of what was already present at the start of this thesis and what has
been added later. To understand what functionality the app o�ers multiple usage sce-
narios are presented. As the purpose of this app is to make scans of the heads of infants
with the front-facing camera of the iPhone, one major challenge is that the phone screen
might not always be visible. Therefore it is necessary to develop a concept for interacting
with the user during a scan, which forms the content of the second part of this chapter.
It will examine di�erent approaches for achieving the best possible interaction.
Having in mind what preconditions had to be dealt with and why a certain concept for
giving feedback to the user was chosen, the implementation chapter outlines the over-
all structure of the app. This chapter provides a detailed insight into how the di�erent
views are built and how the logic works, as well as how they interact with each other. To
evaluate the e�ectiveness of the implemented features, the app will be tested and these
tests will also be presented and evaluated.
The �nal chapter of this thesis includes a conclusion and summary of the initially set ob-
jective and how it could be implemented. Furthermore, it will give an outlook of how this
app can be extended further in future work.

4

2 Basics

2.1 SwiftUI

Apple provides two frameworks for building iOS apps. UIKit [29] and SwiftUI [28]. UIKit
is the most popular framework and has been present for many years. However in 2019
Apple introduced a new framework, called SwiftUI. Ever since more and more features
have been implemented and iOS features like Widgets are even SwiftUI exclusive.
The technical prototype of the scanning app is implemented using UIKit, but the version
that is developed in this thesis uses SwiftUI. This chapter will provide a basic understand-
ing of the SwiftUI framework to ease the understanding of the �nal implementation.

Entry Point

To develop a projectwith SwiftUI orUIKit the IntegratedDevelopment Environment (IDE)
Xcode [35] is used. When a new SwiftUI project is created two �les will be created.

• One �le is named like the project name and is the entry point to the app (like the
main method in other programming languages).

• The other �le is named ContentView and is the �rst view the user is presentedwith.

Views

The user interface of an app is made up of one or more views. A view can either �ll the
entire screen or just be a dot on the screen. One view can be formed by one or more
views. Figure 2.1 shows an example view with a preview of what it would look like on
the right. In SwiftUI every element that is visible on screen is a struct that conforms to
the View protocol [34] (line 2 in 2.1). This protocol forces the developer to implement
a property called body[13] (line 3 in 2.1). This property is a so-called view builder and
returns the opaque type some view. This means that the code inside the curly brackets
of this property needs to return some kind of view. This can be a text view, an image
view, a button view or multiple views combined as long as they together form a single

5

2 Basics

Figure 2.1: A view called ContentView that is made up of two vertically aligned Text elements.
The yellow lines show the SwiftUI elements.

view. SwiftUI o�ers prebuilt components like text (line 5, 6 in 2.1), images, buttons, etc.
To combine multiple view components to form a single view a VStack (line 4 in 2.1),
HStack or ZStack, which correspond to vertical stack, horizontal stack and z-stack, are
used. The children elements of these stacks are aligned just like their names suggest
either in a vertical line, horizontal line or placed on top of each other. These stacks can
also be placed inside each other.
Lines 10-14 in 2.1 serve as a preview of the view created by the code on the left side,
which is displayed in the IDEXcode during development. This is a very convenient feature
of SwiftUI.

Styling

View modi�ers (lines 8, 9 in 2.2) are used to style view components. They can be used
to set the background color, the foreground color (lines 8 in 2.2), padding, corner radius,
etc. Viewmodi�ers set the corresponding property for the view they are attached to and
its children. In the example 2.2, both texts would be colored green and have the text size

Figure 2.2: A vertical stack containing two colored text elements with a preview on the right.

6

2 Basics

of largeTitle as the modi�ers are placed on the VStack that encapsulates the two text
elements.

Listening to Events

To listen to events like a tap-gesture, a swipe action, the event that a view appears or
disappears, etc., input and event modi�ers are used. Just like view modi�ers they are
attached to a certain view component. For a comprehensive list, refer to the Apple doc-
umentation [18].

State Management with Property Wrappers

When building user interfaces it is often necessary to save a state, for example, the num-
ber of times a button was tapped. Furthermore, a view component that displays such a
value or depends on it, should be updated once the value is updated. In SwiftUI prop-
erty wrappers o�er exactly that functionality. Property Wrappers are written before the
variable with a @ sign.
For a complete list of all property wrappers, refer to this page [39].

@State

Figure 2.3: An example for using the property wrapper @State, including a diagram.

To read andwrite a value inside a struct and to update the view components that depend
on this value, the property wrapper @State [26] (line 3 in 2.3) is used. This also applies to
the scenario where a @State value is passed to a child view. The child view will also be
updated accordingly. Modifying a value inside a struct would normally not be possible

7

2 Basics

as structs are value types, but with the @State annotation this value is no longer stored in
the struct but in the managed storage of SwiftUI. In the example 2.3 the text is updated
every time the button is tapped.

@Binding

However, if the goal is to move the Text element that displays the tapCounter to a cus-
tom view that is called from ContentView, the property wrapper @Binding is necessary.
ChildView only contains the Text element from ContentView and the code from listing
2.1.

1 @Binding var va lue : I n t

Listing 2.1: An example for declaring a binding

Passing a state value via parameter to a binding requires a dollar sign 2.2.

1 ChildView (va lue : $tapCounter)

Listing 2.2: An example for passing a binding as a parameter

Like before, the text is updated once the button is tapped.

@EnvironmentObject

To share an object throughout the app, it can be passed into the app environment. If an
object is accessible in the environment it does not have to be passed through any layers of
hierarchy [19], so it does not have to be passed as a parameter from one child view to the
next. With the modi�er environmentObject, an object is placed in the environment of
all descendant views of the view to which the modi�er is applied to [19]. In the following
example 2.3, the object book is available to every view inside ExampleView.

1 @StateObject var book = Book ()
2 var body : some View {
3 ExampleView ()
4 . environmentObject (book)
5 }

Listing 2.3: An example for using @StateObject and environmentObject

8

2 Basics

To access an environment object inside a child view, use the property wrapper @Envi-
ronmentObject (listing 2.4).

1 s t r u c t ChildView : View {
2 @EnvironmentObject var book : Book
3 }

Listing 2.4: An example for using @EnvironmentObject

Navigation between Views

An app usually contains multiple views that �ll the entire screen. To access the di�erent
views there has to be some kind of navigation between them. In SwiftUI there are two
types of navigation techniques. Either stack navigation or modal navigation.
SwiftUI o�ers the struct NavigationView [22] for a stack-based navigation where the
struct NavigationLink is used to trigger a new view to be slid on top of the original view
with a slide animation from right to left. In the upper left corner, a button to navigate
back is placed by default.
Example 2.5: Navigate to the view NoteEditor when tapping on a list row.

1 NavigationView {
2 L i s t (model . notes) { note in
3 Nav igat ionL ink (note . t i t l e , de s t i n a t i on : NoteEditor (i d : note . i d))
4 }
5 Text (" Se lec t a Note ")
6 }

Listing 2.5: An example for using a NavigationView [22]

Modal navigation is achieved by using either the method sheet [25] or fullScreenCover
[17]. The view to navigate to is presented by a slide animation from bottom to top. Both
methods require a boolean state value which indicates whether to show the modal or
not.
Example 2.6: Show TargetView when the button is tapped.

1 @State p r i v a t e var showSheet = f a l s e
2 var body : some View {
3 Button ("Show modal view ") {
4 showSheet . togg le ()

9

2 Basics

5 }
6 . sheet (i sPresented : $showSheet) {
7 TargetView ()
8 }
9 }

Listing 2.6: An example for using modal navigation

Differences between UIKit and SwiftUI

Category UIKit SwiftUI
programming
paradigm

imperative declarative

API coverage complete limited
iOS support all versions iOS 13 and later
live-preview no yes
architecture MVC MVVM

Table 2.1: Di�erences between UIKit and SwiftUI

The main di�erence between the two frameworks is that SwiftUI uses the declarative
programming paradigm while UIKit uses imperative programming. Imperative program-
ming means coding step by step what and how it should be done, whereas in declarative
programming the code describes the desired result, but not necessarily the exact steps
that lead to that result. This makes building user interfaces oftentimes a lot faster and
requires less code.
As SwiftUI is a rather new framework it only supports the iOS version 13 and later ver-
sions. So if the goal of an app is to support very old iOS versions, UIKit might be the
better choice.
During development Xcode o�ers a live preview of the SwiftUI view that is currently
created, without the need to start a simulator (a simulator is however still available). The
most signi�cant drawback of SwiftUI is its limited API coverage. This is an issue that
will get smaller and smaller over time as more APIs will be supported with SwiftUI. This
doesn’t mean that they can’t be used. It is just a little more complicated to do so.

Interacting with UIKit

As SwiftUI is not yet as established as UIKit, there are certain features that are not yet
available in SwiftUI. However, it is still possible to use themwith the help of the protocols

10

2 Basics

UIViewRepresentable [31] and UIViewControllerRepresentable [30].
Instead of building a struct that conforms to the View-protocol like with a normal Swift-
UI view, a struct that conforms to one of the protocols from above, is built.
These protocols require the developer to implement the methods makeView and update-
View. Inside the method makeView all code is written to create the speci�c UIKit view.
Themethod updateView can be left empty or used if there is a value from another SwiftUI
view, that is needed in the UIKit view. The method updateView is then called every time
the binding value inside the UIKit-struct is updated.
If the goal is to communicate changes from the UIKit-view to other SwiftUI-views, a class
called Coordinator needs to be implemented.

2.2 Metal

Metal [21] is an API from Apple for GPU (Graphics Processing Unit)-accelerated 3D
graphics. It is designed just for Apple products, but therefore highly optimized with low
overhead. In this project, Metal is used to render the 3D point cloud. Figure 2.4 shows
the most important classes, protocols and methods, including their dependencies and
relationships, that are necessary to render something on the screen with Metal. They are
sorted from top to bottom in the order they would be called in.
The diagram is divided into two parts. What the developer needs to de�ne once and
what is newly de�ned for every screen refresh.
The following description is based on the sources [33], [6] and [1].
A MTLDevice is a reference to the GPU, so the part that executes the rendering with
Metal. A CAMetalLayer is used to create a texture on the screen where later a trian-
gle or dot will be displayed on. In Metal every custom view that is built, is made up
of Metal primitives like for example a triangle or dot. The vertices of those primitives,
so their location on screen and their color, are stored in an MTLBuffer. Next, the func-
tion VertexShader is called for every vertex in the MTLBuffer and is reponsible for fur-
ther processing. Afterwards, the function FragmentShader is called for every pixel and
determines its �nal color. These two functions are called as part of a pipeline that is
made up of a MTLRenderPipelineDescriptorwhich de�nes which VertexShader, which
FragmentShader and what pixel format should be used for this speci�c pipeline. Finally,
this is bundled in a MTLRenderPipelineState which is used to reference and use this
pipeline. Next, a CommandQueue holds all the commands that the GPU should execute
next which are made up of MTLCommandBuffers each. An MTLRenderPassDescriptor de-
�nes the clear color, so the color shown on screen before anything else is rendered on

11

2 Basics

Figure 2.4:Metal rendering process based on [33], [6], [1]

12

2 Basics

screen, andwhere for example the triangle should be drawn onto (CAMetalLayer). Finally,
a MTLRenderCommandEncoder is used to encode the earlier de�ned con�gurations into the
MTLCommandBuffer, which is lastly executed by the GPU and the result is presented on
the screen.

2.3 Functionality of the TrueDepth camera system

The TrueDepth camera system was introduced with the iPhone X and is located at the
front of the iPhone inside the black area called "notch". For daily use, it is used for a
feature called FaceID, which is a biometric authentication that allows users to unlock
their iPhone or to use Apple Pay. In this project, the TrueDepth camera system serves
as a means to record RGBD (Red Green Blue Depth) data. The depth data allows us to
detect depth di�erences on the head of an infant. The TrueDepth camera system is made
up of di�erent components (see 2.5).

Figure 2.5: The TrueDepth camera system of the iPhone X [2]

How it works

The components of the TrueDepth camera system to measure depth data use infrared
light, which works well with both low-lit and bright-lit conditions. Another advantage is
that a human cannot see infrared light so the light does not blind the user during use.
First, the �ood illuminator creates infrared light to illuminate the entire face and the dot
projector creates about 30000 infrared dots which are projected onto the surface of the
face of the user [37].

13

2 Basics

Next, the infrared camera can detect infrared light and can capture both a heat image of
the face as well as create a depth map from the infrared dots [37]. The information that
the TrueDepth camera system provides, allows us to determine the distance of a pixel
from the front-facing camera. The minimum distance from the object should be more
than 15cm for the sensor to retrieve valid data [5].

Why LiDAR is not used

The TrueDepth sensor’s minimal working distance and its accuracy are in the millimetre
range which makes it ideal for this project’s use case as the person performing the scan
is very close to the infant. Although LiDAR also works with infrared light, it works best
for longer distances and it places infrared dots further apart than the TrueDepth system
does, which makes it less precise [42]. The TrueDepth camera system is better suited
for this particular use case and is available on every iPhone, starting with the iPhone X,
whereas LiDAR is only available on the Pro-series of the iPhones, startingwith the iPhone
12 Pro.

2.4 Inclusion of OpenCV in an iOS Xcode Project

OpenCV (Open Source Computer Vision Library) [38] is an open source computer vision
and machine learning software library with more than 18 million downloads. It provides
all kinds of algorithms for computer vision use cases and can be used in C++, Python,
Java and MATLAB, however, it is written natively in C++ [38]. OpenCV is used in this

Figure 2.6: An example of an ArUco marker 1

application to detect so-called ArUco markers 2.6 on the cap that the infant is wearing
during the scan (see 1.1).
These instructions are expanded from the o�cial OpenCV installation manual [3] and
explain how to install OpenCV and use it in an Xcode project.

1https://docs.opencv.org/4.x/marker23.png

14

2 Basics

1. If the Xcode command line tools are not already installed on your mac, install them
by executing the following command in an open terminal:

1 xcode� s e l e c t �� i n s t a l l

2. Create a folder on your mac with a name and location of your choice.

3. Inside the created folder, open a terminal and run the following two commands:

1 g i t c lone https : / / g i thub . com/opencv/opencv . g i t
2 g i t c lone https : / / g i thub . com/opencv/ opencv_contr ib . g i t

4. Inside the same folder created in step 2, run the following command. This can take
a long time. Python as well as cmake have to be installed for this step.

1 python opencv/ p la t forms / i o s / bui ld_framework . py i o s ��cont r i b
opencv_contr ib

5. Con�rm the success of the previous step by checking if there is a folder called
"opencv2.framework" inside the "ios" folder inside the folder created in step 2.

6. Clone or download the InferMod3D project from Gitlab [40] and open it in Xcode.

7. Drag the folder "opencv2.framework" into the left column of Xcode, where all the
source �les are listed.

8. In the pop-up that is shown, select "Copy items if needed", "Add to target" and click
on "copy".

9. In Xcode navigate to app settings and select the tab "Build Phases".

10. Expand the section "Link Binaries With Libraries" and make sure that "opencv2-
.framework" is listed in this section.

15

3 Setup and Concept

3.1 Prerequisites

The version of the app that is developed in this thesis, has the following prerequisites:

• An iPhone X or newer with a working TrueDepth camera system.

• At least three gigabytes of free storage, as one scan can be as large as three giga-
bytes.

• A cap with ArUco markers on it (see �gure 1.1).

• An infant or doll that wears the described cap.

3.2 Preconditions

At the start of this bachelor thesis, the ISRG already provided a technical prototype of the
app. This section describes the functionality of this prototype. For a visual impression of
how the prototype looks, see �gure 3.1. The prototype is based on a tutorial app from
Apple on how to display RGBD data as a point cloud [27].

Main screen

The screen shown in this screenshot is the only screen of the prototype. This screen dis-
plays the current recording as a point cloud or the point cloud from a previous recording.

Why the infant needs to wear a cap with markers

For the scanning procedure the infant has to wear a special cap (�gure 3.1) with so-called
ArUco markers (�gure 2.6) on it. Each ArUco marker serves as a reference point to be
able to construct a 3D model from all the recorded frames. For this construction it is
necessary to know where each frame is positioned in 3D space in relation to another
frame. The markers, i.e. reference points, are the means to achieve this. If the user only

16

3 Setup and Concept

Figure 3.1: Screenshot of the initial technical prototype

records video footage from each side of the head, with no overlapping footage, there are
almost no reference points where to connect the frames.
The ArUco markers that are detected on the cap, are colored in either red, blue or green
(see 3.1). At least every frame, when there is new data from the camera and sensor, these
markers are extracted if possible. Each color symbolizes a di�erent overlap state:

• red: marker is in the current frame, but there is no connection to an older frame

• blue: marker is not in the current frame, but it was in an older frame

• green: marker seen in current and older frame

17

3 Setup and Concept

Why the user needs to set annotations

The objective of recording RGBD data of the head is to create a 3D model of the head,
which provides data to calculate the CVAI. To combine all the recorded frames, reference
points in the frames are necessary. The ArUco markers on the cap are such reference
points (see previous section). However, there are no such markers on the face or on the
ears, even though these body parts are necessary to calculate the CVAI. With adequate
computer vision algorithms, it would be possible to detect these body parts from the
head. The problem is that there is not enough image data of the heads of infants. This
is why the user has to mark the nose tip, the nasion, the left ear and the right ear in the
scan replay by placing a dot (also called an annotation) to this body part. The goal is to
collect enough head data to train an AI than can detect these body parts in the future.

Overview of the framework and most important classes and structs

Figure 3.2:Most important �les in the technical prototype

The prototype is built with the frameworkUIKit [29] fromApple. UIKit projects can either
be written in the programming language Swift or Objective-C. This prototype uses both
languages although Swift is used for interacting with the user interface of the app.
In a UIKit project, every screen of the app has a class that manages this screen. This class

18

3 Setup and Concept

inherits from the UIKit class UIViewController, which provides all the functionality that
is necessary for dealing with the user interface. Figure 3.2 shows an overview of the
most important �les in the prototype. As the prototype only has a single screen the class
CameraViewControllermanages the entire logic and user interface. When, for example,
a button is clicked, the click event is received by a functionwithin CameraViewController
and then the necessary calculations or function calls are made.
Apart from being responsible for the interaction with the user interface, the class Cam-
eraViewController is also responsible for handling the camera and sensor data. The
framework AVFoundation [9] from Apple is used for that purpose. It allows a developer
to interact with audiovisual media on Apple products. To use this functionality the class
CameraViewController inherits from the protocol AVCaptureDataOutputSynchroniz-
erDelegate, which forces the developer to implement the method dataOutputSynchro-
nizer. When the app uses the TrueDepth camera system this method is constantly called
and provides both the video and the depth data.

Functionality of the buttons

To understand what functionality the technical prototype o�ers and how it works, the
following sections will go through each button present on the screen (3.1). The buttons
are mentioned in the order they would be used when creating a scan.
When the app is launched and no button is pressed the live camera feed is displayed on
the screen. However, it is displayed in the form of a point cloud.

Record-button

The "Record"-button starts and stops a recording. The class DepthCapture is responsi-
ble for saving the currently recorded depth and video data to a �le (see 3.2). Starting
a recording creates a new �le in the document directory of the iPhone. The �lename is
formed by the current date. During the recording, a method from DepthCapture is called,
every time the dataOutputSynchronizer method is called. The RGBD Data that is re-
ceived through the dataOutputSynchronizermethod is directly passed to DepthCapture
where it is written into the previously created �le. The passed data is in the form of a
pixel bu�er.

19

3 Setup and Concept

Replay-button

The "Replay"-button replays a recorded scan. Reading the scan data from a �le is handled
by the class DepthReader. The scan �le needs to have the same name as written in the
code, otherwise, the app crashes, i.e. the �lename is not dynamic. Provided that this step
succeeds, the screen shows the point cloud exactly as during recording. Just like during
the recording part, every time the dataOutputSynchronizermethod is called, a method
from DepthReader is called that is responsible for reading from the �le. Again the RGBD
data is passed to DepthReader. First, a pointer to the base address of the passed pixel
bu�er is determined, then a certain number of bytes are read from the �le and lastly this
data is copied to the determined address. The number of bytes that are read from the �le
correspond to the number of bytes of the passed pixel bu�er which is the reason why
the camera is still needed for replaying a recorded scan.

Model-button

The "Model"-button allows a user to switch between the normal point cloud view with
markers and a view where only the detected ArUco markers and annotation dots are
shown.

Freeze-button

The "Freeze"-button pauses the replay and allows the user to set annotations to a speci�c
part of the head.

Annotation-selector

To create a complete 3Dmodel of the scanned head and to calculate the CVAI-index, the
user has to identify the nose tip, nasion, left ear and right ear. To set an annotation to
a part of the head, this part �rst has to be selected from the selector on the top of the
screen (see 3.1). When a head-part is selected, the user can drag over the screen and a
colored dot (the annotation) will appear that can be placed at a certain position. If the
current location of the head is not ideal a user can also rotate and zoom the displayed
point cloud by selecting "Inspect" at the top of the screen and dragging over the screen.
A double-tap resets the view’s position and orientation. The logic for this functionality is
contained in PointCloudMetalView and called from CameraViewController.

20

3 Setup and Concept

Save-button

After the user sets the annotations to the right ear, left ear, nasion and nose tip they can
be saved into a separate text �le, named "AnnotationMarkerCoordinates.txt" by pressing
the "Save"-button. Unlike the scan saving, this saving part is handled by a method in
PointCloudMetalView and the �lename is not dynamic. Apart from the annotations also
the markers are saved in this �le.

Load-button

If annotations were already set and saved in a previous replay they can be loaded and
shown in the model with the "Load"-button. If these annotations don’t exist, the app
crashes. This part is also handled by a method in PointCloudMetalView.

CVAI-button

Once a replay is fully played, all annotations are set and the device is newer or equal
than the iPhone 11 the "CVAI"-button calculates the Cranial Vault Asymmetry Index. The
result is shown in the console output in Xcode. For a reliable result, the replay has to be
replayed at least one time so that all markers can be detected and all the annotations set.
The reasonwhy this onlyworks on an iPhone 11 or newer is that a technique called vertex
ampli�cation is used for calculation. This is a feature from the framework Metal. This
technique however requires at least the A13 Bionic processor [20] which was introduced
with the iPhone 11. On iPhone X, XR and XS which already have FaceID, but an older
processor, the app will crash on launch when failing the check if vertex ampli�cation is
supported. For the devices where this calculation is supported, 36 images are saved into
separate �les that show the outline of the head at a certain layer. During calculation the
head is divided into layers from top to bottom and the goal is to �nd the layer with the
longest contour.
The ISRG also published a separate paper [43] on how the 3D head reconstruction and
CVAI calculation work in detail.

Reset-button

Finally the "Reset"-button resets the point cloud model.

21

3 Setup and Concept

Further functionality

When a user installs the app the �rst time, it will ask for permission to use the camera.
This is required by iOS. If a user declines an alert is shown where the user can navigate to
the app settings to enable it. Furthermore, there is an alert when the TrueDepth sensor
gets too warm.

3.3 User Experience Concept

The purpose of this app is to create scans of the heads of infants with the help of the
TrueDepth camera system of the iPhone.
The camera system is located at the front of the iPhone at the top of the screen (as ex-
plained in section 2.3). This creates a challenge for the person creating the scan because
the camera has to point to the infant which means it points away from the operator,
which �nally means that the person that is recording cannot see the screen accurately.
However, the user still has to make sure that the head of the infant is not too close, not
too far away and not just partially in the camera’s view.
The next challenge for the user is to somehow know when the entire head has been
recorded so that the recording can be safely stopped. After all, the goal of this version
of the app is to collect high quality data to train a model. When it is time to export the
data from the phone to the server for training, it would be very unfortunate if some of
the data can’t be used because it is incomplete. That is why there has to be feedback to
the user regarding the completeness of the scan.
This chapter will present the steps that were taken to accomplish the �nal feedback con-
cept that is implemented in the app.

What feedback output mechanisms does the iPhone offer?

The �rst step is to �nd out all the features that an iPhone o�ers that could be used to
provide feedback to the user.

Screen

The most obvious solution for giving feedback on a phone is the screen, as it o�ers a
wide variety of visual feedback possibilities. But as described in the previous section,
the screen is not always visible to the person recording as the phone faces in the other
direction. Therefore the screen can very well be used for any feedback before starting a

22

3 Setup and Concept

recording and after stopping a recording, but it is not ideal for feedback during a record-
ing.

Audio

Another option is to use audio feedback. Audio output has the advantage that it doesn’t
matter which way the phone is turned, the audio just has to be loud enough for the user
to hear it. Audio allows us to use simple sounds like in a parking sensor or use actual
recordings of words or even sentences. Words or sentences have the advantage of being
very descriptive. One thing to keep in mind is that the user of this app is dealing with
infants who might react very di�erently to audio than the user would. A loud beeping
sound like in a parking sensor could frighten the infant which can’t be the goal of this
app. One solution could be to wear headphones while recording so that the infant does
not hear the sounds.

Haptic

A further non-visual feedback mechanism is haptic feedback, i.e. vibrations. Vibrations
are normally used to, for example, indicate that a new message arrived, that a timer has
�nished counting or that somebody is calling. Vibrations can be customized regarding
their intensity, their sharpness and their duration. Just like with audio feedback there is
also the advantage that the phone has certain default vibrations for success and error
that the user is already familiar with. This could make the usage of the app easier when
a user can already associate certain vibrations with certain meanings.

Light

A �nal option is the �ashlight of the phone. It is conveniently placed on the back of the
iPhone which is visible to the user at all times during the recording. It does not o�er
as much variety as audio or haptic feedback, but it can still be controlled regarding its
brightness and how long it is turned on. However, like audio feedback, it might scare the
infant and it has to be examined whether the brightness is bearable for the user or if it is
distracting.

Which events require feedback?

Before choosing a feedback output mechanism, the events that require them, have to be
determined �rst.

23

3 Setup and Concept

Positioning

The �rst event is the positioning of the iPhone during a scan. As the iPhone is faced away
from the user during the recording, it is hard to see the rendered point cloud on screen
and therefore the user can often only guess if the iPhone is held in the correct position,
meaning that the head of the infant is fully within the camera’s view.
The position can be o� in a few di�erent ways:
The iPhone is held too far away from the head, too close, too far to the right, too far to
the left, too far to the top or too far to the bottom.
The positioning also a�ects how much the video frames are overlapping. As only over-
lapping frames can be used for the construction of the 3D model, it is important that
every part of the head is recorded with enough overlap (as explained in section 3.2).

Progress

The second event that requires feedback is the progress of the scan, as already insinuated
in the introduction of this chapter. The user has to be informed when a scan is complete
and when the recording can be stopped. But what about the time before that? It might
also be a good idea to give some feedback when the user has reached the middle of the
scan, to give him/her an idea of the progress so far. However, giving progress feedback
for every ten percent progress is probably too much and there is a high chance that the
progress feedback might interfere with the positioning feedback and just confuse the
user.

What data is available to create feedback from?

Now the question arises what data does the app process that can be used as a criteria
to trigger feedback. So what data is processed in the app that can be used to make a
statement about the positioning of the iPhone and the progress of the scan?

Markers on the cap

The �rst possible data source is the markers on the cap. During the scan, the infant has
to wear a cap with ArUco markers (2.6) on it.
Each marker has a unique ID that is always the same, meaning it is not an ID that the
software assigns the marker dynamically, but an ID that can be read from the look of the
marker itself. The app already has the functionality to detect these markers and extract
their ID.

24

3 Setup and Concept

On top of that, the app already determines the amount of overlap between the video
frames using the ArUco markers. The technical prototype already colors the markers in
the live point cloud video feed according to their overlap status (as shown in �gure 3.1).

Depth and video data

Another data source is depth and video data. Detecting the position of a head of an
infant from the video is easy for a human being, but for an app to do it, it needs computer
vision algorithms for head detection. As such algorithms are not implemented in the app,
this option is discarded for now, because it should be examined �rst if there already is
functionality in the app that can be used as a data source for either the positioning or
progress feedback.
The depth data could potentially serve as a means to detect the distance of the iPhone
from the head.

How ArUco markers are used as a feedback data source

The option that seems most suitable is to use the ArUco markers as a data source, be-
cause feedback can be provided both about the positioning and the progress.
First, the total number of ArUco markers on the cap is determined. During the recording,
the number of detected marker IDs is counted and in combination with the total marker
count, the progress of the scan can be calculated. When counting themarkers there can’t
be any duplicates, but with the unique ID of each marker, this isn’t a problem.
At least once per frame, the overlap of the markers is calculated. A 3Dmodel can only be
successfully created if the frames that are used to build it, have enough overlap. When
the iPhone is positioned poorly, the overlap is insu�cient, because fewer or no markers
are detected. When the overlap is su�cient, the iPhone is also positioned well. So the
overlap status is used as a indicator for how good or bad the iPhone is positioned.

Combining data with a feedback mechanism

We now established what data serves as a source for the positioning and progress feed-
back. In the following, di�erent output mechanisms to give feedback about the position
are evaluated.

25

3 Setup and Concept

Vibrations to indicate bad positioning

The �rst attempt is to use vibrations to indicate that there is not enough overlap between
the frames, i.e. the positioning is bad. For this kind of feedback, the system error vibration

Figure 3.3: iOS system error vibration pattern

pattern (3.3) is used. If the user already has an iPhone he/she is probably familiar with this
vibration pattern and associates some kind of error with it. For each frame the overlap
status is determined and when there is too little overlap a vibration is initiated.

Setting a threshold for a feedback event

Figure 3.4: First feedback mechanism attempt

However, while testing, this approach didn’t seem very e�ective anymore. As the overlap
is determined per frame and there are dozens of frames per second, the overlap value
is updated a lot. Oftentimes there was too little overlap every other frame and as pro-
grammed for each insu�cient overlap, a vibration is played (see 3.4). So a vibrationwould
start, but then in the next frame the overlap was su�cient again, however, the vibration
would still be in progress and then a few frames later the overlap was insu�cient again,
which again triggered a vibration. In total it sometimes seemed like the phone is vibrat-
ing all the time. Therefore we can’t use the value of the overlap variable in every frame.
There has to be some kind of threshold and only if this threshold is reached a vibration is

26

3 Setup and Concept

triggered. So the idea is to only update the overlap status if the overlap value has been
the same for a certain number of frames in a row. The question is where should the
threshold be set at? Heuristically this value is set at ten, which in practice proved to be
acceptable.

Creating a custom vibration

Although the update problem is solved, the vibration pattern also didn’t seem ideal. It
was a very light vibration and not that noticeable (see 3.3), especially when taking into
consideration that the infant might make noises during the scan and therefore distract
the physical therapist. The next step is to create a custom vibration that has the right
intensity and sharpness. To determine an ideal combination of intensity and sharpness a
tutorial haptics app from Apple was used [32].

Figure 3.5: custom error vibration pattern

The new custom vibration 3.5 is continuous and doesn’t change in intensity while being
played. So now a continuous vibration is played when there is insu�cient overlap for ten
frames in a row. However, it is still not ideal.
Consider the following scenario: The insu�cient overlap threshold is reached, a vibration
is triggered and then the vibration has �nished playing. How does the user now know
when there is enough overlap again, so he/she can stop adjusting the iPhone’s position?
When there is no new vibration, correct? True, but what if there is just no new vibration
because the overlap status stays false because for a certain amount of time, there are
not enough frames in a row to �ip it to true. This means that the user thinks the phone
is positioned correctly, because there is no new vibration since the last one, but in real-
ity, the overlap status just stayed insu�cient and that is why there is no new vibration.
To conclude, we need some kind of con�rmation when the iPhone is back in an ideal
position.

27

3 Setup and Concept

Figure 3.6: iOS system success vibration pattern

Adding a second vibration

For the con�rmation, the system’s success vibration 3.6 is used. This vibration is less
intense than the custom vibration that was created for indicating a not ideal position.
This makes it easy for the user to distinguish the two vibrations. In the scenario from
above, a user would know that if there is no success vibration after the error vibration,
he/she is still not in an ideal position and can keep adjusting it, until the success vibration
occurs.

Feedback with the flashlight

Next, the possibility to use the �ashlight on the iPhone is examined. To replicate the
method we used before with vibrations, we need two di�erent patterns with one sym-
bolizing an error and the other success. As we don’t want to hurt the eyes of the user
the brightness needs to be at the lowest setting. However, this only leaves us with the
possibility to turn it on or o�, so replicating the vibration pattern with the �ashlight might
be possible, but hard to remember for the user. A more e�ective way seems to be to turn
the light on, when the overlap is insu�cient and turn it o�when the overlap is su�cient
again. Having the �ashlight turned on when there is too little overlap turned out to be
very e�ective and easier for the user. The reason is due to a speci�c scenario that oc-
curred while using vibrations. A vibration would be triggered, so the threshold counter
would be reset. Then the threshold is met again and there is another error vibration
without having a success vibration after the �rst error vibration. This was somewhat
confusing and the option to have the �ashlight turned on the entire time seemed more
e�ective. Yet the �ashlight is very bright even at its lowest setting and therefore not a
viable feedback option.

28

3 Setup and Concept

Feedback with audio

One feedback mechanism that has not been tested yet is audio. As audio can be very
descriptive and easy to use, the feedback logic that was used in the �rst attempt with
the vibrations is used again. Meaning that there is some audio output when the overlap
is insu�cient and another audio output when the overlap is su�cient again. A recording
of the words „o�“ and „in“ is made, symbolizing the user is out of position or back in
position. Unlike with the vibrations, it is necessary that the iPhone is not in „do not
disturb“-mode as the audio would usually not be played in this case. Apart from this
minor inconvenience, audio proves to be a viable feedback mechanism.
To conclude, the option to use vibration is almost ideal, using the �ashlight is not an
option and audio is ideal.

Feedback about the scan progress

Now that all possible feedbackmechanisms have been evaluated, they need to be applied
to providing feedback about the scan progress as well. As already mentioned, progress
feedback does not require that much feedback. Letting the user know when he/she has
reached the middle of the scan and the end of the scan appears to be su�cient until
properly tested. Using audio output for this kind of feedback seems to be the most
e�ective way as it is the most descriptive option. It allows us to play a recording of
the word "50" to indicate that the user has reached the 50 percent mark of the scan and
the word "Done" to indicate the end of the scan. If we were to use vibrations for that
kind of information the user would need to remember some kind of vibration pattern that
represents "50" and another pattern that represents "Done", which is too much work for
the user.

Choosing a feedback mechanism for the scan progress and the marker overlap

When using audio output for the progress feedback the question arises what feedback
mechanism to use for giving feedback about the overlap? The result of the previous eval-
uation of the di�erent feedback mechanisms concluded that audio is ideal and vibration
almost ideal. Even though audio is ideal it has to be taken into account that the progress
feedback is using audio as well, which could potentially mix with the overlap feedback.
Maybe there is a way to make vibrations ideal as well. And there is.
In the previous evaluation, part of the disadvantage of the vibration feedbackmechanism
was that there were two kinds of vibration patterns, one for error and one for success.

29

3 Setup and Concept

When evaluating the �ashlight option it was not suitable because of the brightness, but
the pure logic for giving feedback via light concluded to be very e�ective and intuitive
for the user. To recap, the light is turned on when the position is not ideal and turned
o� again when it is ideal. So why not use that logic for vibrations? In practice this means
that the continuous vibration pattern, shown in �gure 3.5 is played the entire time the
iPhone is not in an ideal position and once the position is ideal, the vibration is stopped.
As already mentioned this has the great advantage that the user does not have to focus
as much on what kind of vibration pattern was emitted and if there is an error or success.
Now there is just one kind of vibration pattern, which indicates an error and if the iPhone
stops vibrating the user can be certain that the position is ideal.

Adding visual feedback for the scan progress

Regarding the feedback for the overall scan progress, there is one more aspect worth
implementing. Imagine the following scenario: The user is performing a scan and hears
the audio output "50", keeps on scanning and then the audio output "Done" is played.
However at that moment, the infant is crying very loud and the user is not sure if this
audio output was already played or not, so he/she doesn’t know if the recording can be
stopped. Wouldn’t it be helpful in this case to show the progress on the screen? The
user can’t really see the screen most of the time, but in this case, the iPhone can be
turned a little bit to allow the user to check the progress and to give him/her certainty
about whether the scan is �nished. To show the progress on the screen, a progress bar
is implemented.

The positioning feedback is not enough

The current state of the feedback is:
Position feedback

• Start vibration, if the marker overlap is insu�cient ten times in a row.

• Stop vibration, if the marker overlap is su�cient ten times in a row.

Progress feedback

• Play audio "50", when 50 percent of all marker IDs have been detected.

• Play audio "Done", when 100 percent of all marker IDs have been detected.

• Show the progress visually as a progress bar.

30

3 Setup and Concept

Although it is very helpful to knowwhen the position is not ideal and needs to be adjusted
it does not make it easier to �nd the correct positioning of the iPhone so that the position
is ideal again. There are six potential directions the iPhone could be moved towards.
Towards the head, away from the head, to the left, to the right, up and down. If the user
only knows that the position has to be corrected, he/she can either guess which direction
is the correct one by examining how the iPhone positioning looks in relation to the head,
or he/she can try every possibility until the vibration stops.
In section 3.3 we stated that we only have the marker information, the depth-and video
data.

Delivering more expressive positioning feedback - first idea

The �rst idea is to use the depth information of the TrueDepth camera system to detect
the distance from the head and in return, give the user feedback to either move further
away or close in. However, the following questions need to be answered for that:

• Which points of all recorded points belong to the head of the infant andwhich ones
to the surrounding?

• Which point is the closest one to the camera?

So the great challenge is to �gure out a point to retrieve the depth information from.
Looping through all points and selecting the one with the smallest distance for every
single frame, is performance-wise not possible as it would take way too long.

Delivering more expressive positioning feedback - using the ArUco markers

Even if looping through all points to �nd the closest one would work, it still would only be
a guess, that the closest point is a point of the infant’s head. However, using the markers
on the cap erases this guess.
For each corner of an ArUco marker its x and y coordinates in the image, as well as its
depth data are determined. Testing showed that when the sensor gets too close to an
ArUco marker, the depth information of a corner returns nan, which corresponds to "not-
a-number". This is the only scenario where this value is returned, which makes it ideal as
a criteria to determine whether the user is too close to the head. This leaves �ve more
directions to �gure out.
Increasing the distance between the markers and the sensor only results in detecting
fewer markers which is not a good indicator of being too far away, because this can also
occur due to bad lighting or because only parts of the head are in the frame.

31

3 Setup and Concept

However, the x and y coordinates of the corners of the markers can be used to determine
the other four directions (left, right, top, bottom). The goal is to �nd the center of the
head or at least the center of the part that is visible in the recorded image (green cross
in 3.7). By comparing this center position to the center of the image, its position in the
image can be determined and appropriate feedback delivered to the user. Depending on
the position of the head center the feedback can be "up", "down", "left", "right", "left-up",
"left-down", "right-up", "right-down". If the head center lines up with the center of the
image, the head is positioned ideally. To deliver this kind of feedback, vibration is not
a viable option as it would require too many di�erent feedback patterns to symbolize
each scenario. This is why audio is used for this purpose. To indicate that the position is
not ideal in general, including being too close and otherwise o� position, vibration is still
used. Audio is used as an addition to give positioning instructions when possible.

Figure 3.7: Determine 2D position of the head within the recorded image

When to deliver which positioning feedback - criteria

After developing a technique to determine instructions on how to position the iPhone,
we again have to combine all the available data sources and de�ne how to set the criteria
for the positioning feedback.
Available information to potentially trigger positioning feedback:

• marker overlap (with or without threshold)

32

3 Setup and Concept

• number of detected marker IDs

• number of markers with invalid depth information

• 2D position of the head, if markers are detected

The marker overlap still is a very strong criteria as it is crucial for constructing a complete
3D model of the head and therefore remains a primary criteria.
There are three scenarios to distinguish between. The position is ideal, the position is
too close to the head or the position is otherwise o�.
In the ideal position, the marker overlap is su�cient and all markers have valid depth
information. To distinguish between being too close to the head and being otherwise
o� position there has to be some threshold for the ratio of markers with invalid depth
information and all detectedmarkers. This ratio is set to about 30 percent. So the position
is too close whenmore than 30 percent of all markers have invalid depth information. On
the other hand, if the number of markers with invalid depth information is less than 30
percent of all markers and the overlap is insu�cient, the position has to be otherwise
o�. This could be too far away or too far to a speci�c side. And in this scenario, the new
positioning feedback with the directions the iPhone has to be moved to, comes into play.
Like previously for the new criteria a threshold, as described in section 3.3, is used again.

Making the positioning feedback criteria less strict

Testing showed, that the criteria, described in the previous section, is too strict and trig-
ger feedback even though the position seems ideal when looking at the display. Now the
primary criteria that decides whether the position is o� or ideal is the marker overlap.
Only if the marker overlap is not enough, it is distinguished between being too close and
otherwise o� by looking at the ratio of invalid markers to all markers. On top of that, the
criteria of whether the head is in the center of the image was loosened. First, a range of
�ve percent next to the section of the x-axis and y-axis middle was introduced (red area
in 3.8). Second, we no longer use the center of the head and compare it to the middle
of the image, but the vertical and horizontal maximum values of the head (green lines
in 3.8). In the scenario, shown in �gure 3.8 the audio feedback would be "left-down".
The �gure portrays the device in landscape mode because this is the way the TrueDepth
sensor delivers its data. However, the user will hold the device in portrait mode. The
feedback is "left-down" and not "left-up", because the camera of the iPhone is attached
at the top of the device. So moving the device down, moves the head in the picture up.

33

3 Setup and Concept

Figure 3.8: Determine 2D position of the head within the recorded image

Summary of the final feedback concept

Both the positioning of the iPhone and the progress of the scan are determined with
information from the ArUco markers.
Position feedback

• Primary feedback: continuous vibration (see 3.5) while the marker overlap is insuf-
�cient for four frames in a row.

• Secondary feedback:

– Audio output "too close" if more than 30 percent of all markers have invalid
depth information.

– Audible positioning instructions ("left-up", "right", ...) if less than 30 percent of
all markers have invalid depth information.

Progress feedback

• Determined by the number of detected marker IDs. The user can select between:

– Audio output every 25 percent.

– Audio output every 50 percent.

– Audio output at 100 percent.

• The progress is also shown visually as a progress bar, which uses the colors from a
tra�c light.

34

3 Setup and Concept

3.4 Usage Scenario

This section describes potential usage scenarios of the app and provides a walkthrough
of the features in each situation.

Create a scan

A new infant with possible head deformation is brought in for a diagnosis. The physi-
cal therapist opens up the InferMod3D Recorder app, makes sure that there are more
than three gigabytes of free storage, checks that the sensor’s thermal state is normal and
adjusts the audio volume according to the surroundings. Afterwards he/she opens the
scanning screen. The infant is meanwhile held by a parent. The record button is tapped
and the front facing camera of the iPhone is turned towards the infant. The physical ther-
apist walks around the infant to record the entire head. During the recording the haptic
and audible feedback helps him/her to position the iPhone correctly. The progress feed-
back via audio informs about the progress of the scan. Either by listening to the audio
output or by looking at the progress bar on the screen, the therapist knows when to stop
the recording.

Collect manual measurement data and rate the experience

After a recording is stopped the patient data input screen automatically appears. The
physical therapist enters data like the diameter, diagonal length, etc. from a manual mea-
surement of the head. This measurement was conducted either before the scan or can
be conducted right now. Once complete, the data is saved and the user is automati-
cally navigated to the screen for rating the scan. In this step the user rates the previous
scan experience by using sliders and toggle switches. After saving this data, the user is
automatically navigated back to the home screen of the app.

Replay and annotate the scan

Afterwards a list of all the recorded scans is opened. The last recorded scan is opened
and starts being played. Now the job is to set an annotation to the right ear, left ear, nose
tip and the nasion. Refer to section 3.2 for why this is necessary. When the replay is at
a position where one of the named body parts is clearly visible, the physical therapist
pauses the replay. From the buttons that appear in the blue tile at the bottom of the
screen the corresponding body part is selected and with a drag gesture, an annotation
dot is placed at the speci�c body part. This is repeated for all body parts. When paused,

35

3 Setup and Concept

the 3D model can be turned and enlarged by either a pan-or zoom gesture to improve
the view on a speci�c body part even more. That way setting an annotation becomes
easier. To reset the view double tap on the screen. Previously annotated body parts can,
of course, be edited again, if a more suitable position in the replay is presented. If the
replay is over and a suitable position for annotating a body part was missed, the replay
can be restarted.

Rename a file

If a scan �le should be renamed after the name of the patient for example, the screen to
manage all the �les can be opened. From the list of all the �les that the app saved, the
desired one is selected by tapping the edit �les button at the top and then selecting the
row. The user clicks on rename and a new view appears where the new name can be
entered and the rename executed.

Export and delete scans

Every once in a while, all the annotated recordings are exported to the server for training
a model. The iPhone is plugged into a Mac and in the Finder the iPhone is selected and
the tab "Files" is opened. Below the name of the InferMod3DRecorder app, all saved �les
appear and can be selected and dragged out of the �nder into a new storage location. To
delete the no longer needed �les, they can either be deleted from within the Finder or
within the �le screen of the app.

Check how the feedback works

If the user is not sure anymore what kind of feedback the app o�ers and what it means,
he/she can navigate to the instructions view, via the home view. Each feedback mech-
anism is described. By tapping on the feedback mechanism a demo vibration or demo
audio output is also provided.

36

4 Implementation - Views and Logic

4.1 What all views have in common

Before each screen/view of the app is presented separately, there are some aspects that
all views have in common to achieve a coherent design and user experience throughout
the app.
The core principle of the entire app is to only present something to the user that he/she
can and should use at a speci�c moment. For example, a button to edit an item from a
list is only shown, once a list item is selected. This prevents the scenario where a user
taps on a button only to �nd out that nothing happens or that an error occurred because
he/she should have only used that button later in time.
All screenshots in this chapter are captured when the iPhone’s appearance is set to light
mode, but every view of the app also supports dark mode. That way, the user can keep
using his/her preferred appearance mode even when using the app.

Figure 4.1: All main views of the app. The arrows show the navigation paths.

NavigationView

For navigation purposes two methods were introduced in section 2.1: Stack based nav-
igation and modal navigation. This app always uses modal navigation for every view
that is newly presented, so in �gure 4.1 the ScanView is presented as a modal from the

37

4 Implementation - Views and Logic

HomeView.
However, every main view (see �gure 4.1) is nested inside a NavigationView [22]. Al-
though navigation is done via modal navigation, a NavigationView is used for design
reasons. The SwiftUI component NavigationView does not only o�er the navigation it-
self, but also certain design features.
For example, the developer can set a navigation title which is the main title at the top
of the view. This title can either be set as a large title (as in the ScanInstructionView
4.3b) or as an inline title (as in the ScanView 4.5a). If there are so many elements inside a
NavigationView that the user needs to scroll the page to see them all, the title changes
its design to an inline title. It also allows placing buttons in the area next to or above the
navigation title (as in the FileView 4.12a).

Modal navigation via fullScreenCover

All views, except the RenameFileView, are presented via a fullScreenCover [17]. With
this function, a view can be placed on top of another view while covering the entire
screen. To dismiss or hide a modal view the following approach is taken. The so-called
presentation- Mode [23] is an environment variable that SwiftUI provides, which states
if a modal is being presented. It also provides a function, called dismiss [16], which
closes a speci�c modally presented view.

All Strings managed from localizable file

Normally when creating a Text-element, the string that this element should display is
placed inside the parenthesis (as seen here: 2.1). This means that when certain texts
should be changed, the developer has to navigate to each Text-element in the code and
change it there.
To make this process more convenient and as a side e�ect even o�er the possibility to
support multiple languages in the app, a process called localization is used.
With localization, the content of a Text-element is not placed directly inside it, but a key
is placed inside it (see listing 4.1). This key refers to the text content.

1 Text (Loca l i zedSt r ingKey (" examp le Iden t i f i e r "))

Listing 4.1: Using a localizable key in a Text element

The text identi�er and the text content are saved in a �le called Localizable.strings
(see listing 4.2).

38

4 Implementation - Views and Logic

1 " examp le Iden t i f i e r " = " Example tex t content " ;

Listing 4.2: De�ning a localizable key-value pair

To change text anywhere in the app, the developer only has to �nd the corresponding
text-key in the localizable-�le and change the text value/content there. It will be auto-
matically adapted in the Text element.

Button design

Figure 4.2: The three di�erent button designs in the app

Three di�erent button designs are used in the app (see �gure 4.2).
Design 1 is a round button with an icon and text. This design is used, for example, to
access a screen like the ScanView or for starting a recording. The text of this button
changes according to the current state of the app. The dynamic text is meant to make
the app more intuitive and easy to use by providing instructions and tips when to pause
a scan replay, for example.
Design 2 is a rather plain design that is used for buttons that the user should be aware
of but not for buttons that represent a primary action button. For example, a button to
close a view. A close button is not the primary goal of the screen but it is still necessary.
Design 3 is a more prominent design and is meant for a more important button, like
renaming a �le.

4.2 HomeView

The HomeView (�gure 4.3a) is the �rst view that the user is presented with. It is the entry
point to the app. This means that this is the place to show information that is relevant to
the user before doing anything in the app, like creating a scan.

39

4 Implementation - Views and Logic

(a) HomeView (b) ScanInstructionsView

Memory check

First, the user needs to know howmuch free storage is left on the iPhone, as a single scan
is about two to three gigabytes large. This prevents the scenario where a scan is created
and during the scan, the memory runs out. Once the memory is below three gigabytes
the icon will change to red and show a cross. The free memory is calculated when the
app launches and every time the ScanView or the FileView are closed because those are
the views where either a new scan is recorded or an old scan is deleted, in other words
where the amount of free storage will probably change.

Thermal check

Second, for recording a scan the TrueDepth camera system is used, which can easily
get hot resulting in the user receiving a warning message to pause its use. To check if
the sensor is cold enough again before starting a new scan, he/she can simply check the

40

4 Implementation - Views and Logic

HomeView. The icon changes colors from green to orange to red. There are four di�erent
thermal levels: nominal, fair, serious and critical [24]. When the thermal state is
either serious or critical the sensor should not be used. Color-wise these levels are
orange and red. On top of that, a message next to the icon is shown to make it clear to
the user, not to start another scan right now. Unlike the free storage space, the thermal
state is monitored all the time by listening to the thermalStateDidChangeNotification
noti�cation from iOS.

Audio check

Third, the app uses audio as a feedback mechanism. In order to understand the audio,
the volume must be set su�ciently. This is especially true, if taken into account, that the
infant might not be quiet during the scan recording. The audio volume on an iPhone can
be set via two buttons on the side of the iPhone. On the HomeView the user is reminded
to check the audio volume before starting a scan by playing a test sound to avoid missing
out on any information.

Logic check

Fourth, the user might not be aware anymore how the feedback works and what kind of
feedback is available. This is why a link to the ScanInstructionsView is provided (4.1).

How audio is played - SoundManager

The class SoundManager holds all the functionality to play audio. Text-to-speech is used
to play audio to provide feedback to the user. This technique is convenient, especially in
the long run, as the text that is said, can be easily modi�ed, instead of needing to create
a new recording of a person saying a certain word or phrase. Furthermore, with text-to-
speech the volume level is consistent, regardless of the word or phrase, whereas when
manually recording a word, it is very hard to always speak at the same volume level.
The class AVSpeechUtterance [12] is used to con�gure the text that should be spoken and
in combination with the class AVSpeechSynthesisVoice [10] the language of the voice,
in our case german, can be set. The class AVSpeechSynthesizer synthesizes speech from
the provided text and provides the method speak to output the audio [11].
Another vital functionality to consider when using audio feedback is to ensure that the
audio is always audible. Every iPhone has a silent mode which can be turned on by a
button on the side of the iPhone. In this mode, the audio would not be played.

41

4 Implementation - Views and Logic

To solve this issue two options were considered:
First, detect when the iPhone is in silent mode and notify the user about it when the
ScanView is opened. That way he/she won’t forget to turn o� the silent mode.
Second, explore an option where audio is still played even in silent mode. The thought
that triggered this idea was that music apps like Apple Music or Spotifywould still play
audio even if the iPhone is in silent mode, which means there has to be an option for that
functionality.
The second approach meant less work for the user, so this was implemented. The class
AVAudioSession is used to communicate to the system how the audio in the app is used
[8]. To achieve the desired functionality, the category playback needs to be set 4.3.

1 t r y AVAudioSession . sharedInstance () . setCategory (. p layback)

Listing 4.3: Con�gure the audio session to continue playing in silent mode

4.3 ScanInstructionsView

This view (�gure 4.3b) helps the user remember the di�erent feedbackmechanisms. Each
list item represents one feedback type. The main heading of a list item is a description of
the speci�c feedback. The secondary heading tells the user what he/she should do when
that feedback occurs. The description text o�ers further details about the feedback type.
Lastly, there is a button in each list item, that lets the user try out the corresponding
feedback. This can either be audio or vibration. That way he/she knows exactly what
kind of feedback the text is referring to.
Refer to section 4.2 to see how audio is played.

How vibrations are generated - VibrationManager

The class VibrationManager holds all the functionality to generate vibrations. First, the
framework CoreHaptics [15] is imported. Refer to �gure 4.4 to see what components
are necessary to generate a custom vibration. An instance of the class CHHapticEngine
creates a connection to the hardware of the iPhone that is responsible for playing haptic
feedback [14].
The next step is to create the actual haptic pattern. A haptic pattern is represented by
the class CHHapticPattern. A haptic pattern is made up of haptic events. A haptic event
consists of an eventType, an intensity, a sharpness and a duration.

42

4 Implementation - Views and Logic

Figure 4.4: The necessary components to generate a custom haptic pattern [14]

The last step is to create a haptic player of the type CHHapticAdvancedPatternPlayer
which provides the methods start and stop.

4.4 ScanView

The ScanView (�gure 4.5a) is used for creating a scan of the head of the infant. This is
the view where feedback regarding the scan is provided to the user. The main part of
this view displays a real-time video feed in form of a point cloud.

Start a recording

At the bottom of the screen in the blue bar, the user can start the recording by pressing
the corresponding button. This action triggers a progress bar to appear at the top of the
screen (top of 4.5a), which displays the overall progress of the scan. The progress bar
uses the same colors as a tra�c light to be as intuitive as possible for the user. The color
red is used for a progress of zero percent to 49 percent, orange for 50 percent to 99
percent and green for 100 percent. Furthermore, the haptic and audio feedback are now
activated as well. The button at the top-right corner to close the view is now deactivated,
so that the view is not accidentally closed while recording.

Pausing a recording

When the user pauses the recording, the feedback is also paused and the camera is
turned o� as it is not needed and this also allows the TrueDepth sensor to cool down.

43

4 Implementation - Views and Logic

(a) ScanView

(b)Message for a successful save operation

Stopping a recording

Once the recording is stopped, a con�rmation message (4.5b) appears at the bottom of
the screen. After one second the PatientMetaDataView is opened automatically.

Memory alert

If upon opening the ScanView there are less than three gigabytes of free storage left,
an alert appears to inform the user about this. On the HomeView the memory row also
displays this fact, but in case the user missed it, he/she is reminded of it again.
If the TrueDepth sensor gets too hot while the ScanView is open, an alert is shown that
informs the user about the thermal state of the TrueDepth sensor and also tells the user
to pause the recording.

44

4 Implementation - Views and Logic

Figure 4.6: The communication from backend to fronted for providing feedback

45

4 Implementation - Views and Logic

Dataflow from the marker detection to the feedback execution

Sections 3.3 and 3.3 already described the idea behind the implemented feedback logic.
This section explains the data�ow from detecting the ArUco markers in the video to trig-
gering the appropriate feedback. Refer to �gure 4.6 for a visual representation of the
data �ow.
The class PointCloudMetalView receives the camera and sensor data 30 times per sec-
ond and holds all the functionality for creating a point cloud from that data with the
framework Metal. The classes VibrationManager and SoundManagerwere already intro-
duced in sections 4.3 and 4.2.
In the class PointCloudMetalView the data that is extracted from the ArUco markers is
directly processed in the methods determinePositionFeedback and updateProgress-
Feedback. Only if the position feedback (ideal position, too close, otherwise o�) is the
same four times in a row, the property positionFeedback is updated. In ScanView this
property is observed and the onChange function will be executed every time the value
changes. Depending on which value the property positionFeedback and the property
headPosition holds, inside onChange either a vibration and/or an audio output is trig-
gered. The scan progress is handled the same, except that there is no threshold that has
to be surpassed.

4.5 PatientMetaDataView

The PatientMetaDataView (�gure 4.7a) is used for collecting data of the infant’s head
that was measured using the "old" measurement method by using a calliper to manually
measure the head of the child. The result from this method can then be compared with
the measurement result of the new 3D method.

Aborting a scan session

If the user just recorded a scan to try it out and doesn’t want to save it and therefore
doesn’t want to collect any measurement data, he/she can abort the session by tapping
the button at the top-right corner of the screen that triggers an alert to con�rm the user’s
choice. By con�rming, the previously recorded scan is deleted and the user is navigated
back to the HomeView.

46

4 Implementation - Views and Logic

(a) PatientMetaDataView (b) PatientMetaDataView: Entering
an already used patient ID

Text field validation

The image at the top of the screen (�gure 4.7a) illustrates which text �eld refers to which
part of the head. Each text �eld validates its inputs. Only if all text �elds contain a valid
input, does the save button at the bottom of the screen become active.
The patient-ID �eld can only be an integer number. Because of that, the user receives a
keyboard that only contains numbers, no commas and no letters or other symbols. This
again follows the guiding principle, to only show relevant information to the user, that
he/she should use. On top of that, the entered ID is compared to all IDs that are currently
saved on the device, to avoid using an ID multiple times. If an already used ID is entered,
a warning appears above the text �eld that shows the user the IDs that are already in use
(see 4.7b).
The rest of the text �elds represent data that can be a �oating-point number. This is
why the number pads also contain a comma in these cases. Each input is validated to be

47

4 Implementation - Views and Logic

a valid decimal number. By mistake, the user could type two commas, which would be
invalid. If a number is invalid the text �eld label turns red.

Saving and continuing

Once all text �elds contain valid inputs, the save button becomes active and saves the
data in a JSON-formatted �le. The �lename contains the ID that the user assigned to the
patient. The scan-�lename consisted of a temporary name until now as no ID has been
assigned yet. But now the scan-�lename can be changed to also contain the ID. After
that the ScanRatingView is automatically opened.

4.6 ScanRatingView

(a) ScanRatingView (b) Second part of the ScanRat-
ingView

48

4 Implementation - Views and Logic

The ScanRatingView (�gure 4.8a) is used to evaluate the e�ectiveness of the feedback
concept that is used during the scan. To make this a quick process and not use too much
of the physical therapist’s time, sliders and toggle switches are used, except for one text
�eld to give further information about the infant’s behaviour if the infant was not co-
operative. The sliders have a value range of one to �ve. The questions are also about
the behaviour of the child. As a very calm behaviour might lead to a better scan than a
restless behaviour.
Just like for the collectedmeasurement data of the PatientMetaDataView, the rating data
is also saved in a JSON-formatted �le. On top of the values that are shown on screen,
the choices about the feedback, that can be set in the SettingsView, are automatically
stored in the same �le.

4.7 ScanReplaySelectionView

(a) ScanReplaySelectionView (b) ScanReplayView

49

4 Implementation - Views and Logic

To select a created scan for replay, the user navigates to the ScanReplaySelectionView
(�gure 4.9a) where he/she is presented with a list of all the scans that the app saved.
A list row is made up of the �lename and a tag. This tag either displays "to do" or "all set".
This phrase is referring to the status of the annotations. If annotations to the nose tip,
nasion, left ear and right ear are set, the status switches from "to do" to "all set". Refer
to section 3.2 for an explanation of why annotations are needed. Tapping on a list row
opens the ScanReplayView.
When a scan replay is closed and the scan list is shown again, a message at the bottom
of the screen appears, that informs the user whether the annotations were successfully
saved in an annotation �le. A hint above the list, informs the user about this saving
behaviour.

How to identify a scan file

As the app does not only save scan �les but also �les for the annotations andmarkers, the
manual CVAI measurement and the rating of a scan, there has to be a way to distinguish
them.
The name of a scan �le is formed in the following format:
[ID]_date_Scan
A scan �le always has an ID, a date that forms the �rst part of the �lename and the word
Scan. Only �les that have an ID and contain the word Scan are shown in the list.

Solving a Memory Leak during development

During the development the following scenario would occur:
After opening and closing about three to �ve scan replays, the app would crash with a
few di�erent error messages:
Cannot allocate memory, Insufficient memory, Cannot create buffer of zero
length, Failed to allocate IOSurface
This behaviour of course should not occur as the user should be able to open as many
replays after one another as he/she wishes to.
As mentioned before, a scan itself can be about two to three gigabytes large and the
error occurred on an iPhone XR, which has three gigabytes of main memory. So if the
scan would be loaded into main memory for replay all at once, the scenario where the
app crashes due to insu�cient memory would be valid. However, this is not the case as
the scan is read into memory frame by frame.

50

4 Implementation - Views and Logic

Automatic Reference Counting and Retain cycles

The next suspicion is a memory leak caused by a so-called retain cycle. To understand
what a retain cycle is, the concept of how Swift manages memory must be understood
�rst.
Swift uses Automatic Reference Counting (ARC). This means that Swift counts the num-
ber of references to a class instance. A reference is called a strong reference when a class
instance is assigned to a variable or property [7]. By counting the number of references,
Swift knows when a class is used or not. Once the reference count reaches zero, Swift
can safely deallocate this class instance as it is no longer used. The deallocation frees
up the memory that was used by the class instance. To know when a class is initialized
and deinitialized (deallocated) the methods init and deinit can be implemented in the
class.
A retain cycle is caused when a class does not get deinitialized as there is a strong ref-
erence to that class instance, so the reference count is greater than zero. This can, for
example, happen if two classes refer to each other and keep each other alive [7]. If this
happens, often the memory grows and grows which causes a memory leak.

How to detect a retain cycle

The next step is to detect the retain cycle. First, the deinit-method and the init-method
of all classes that are used are implemented with a print statement to log to the con-
sole when and if they are initialized and deinitialized. The expected behaviour, in this
case, would be that all the classes that are used inside the ScanReplayView are deinitial-
ized when the ScanReplayView is closed. It turns out that all the classes except the class
CameraManager, PointCloudMetalView, PointCloud are deinitialized. This behaviour can
also be detected by letting Xcode build a memory graph of a speci�c situation. When this
memory graph is built after the ScanReplayView was closed, it showed that the men-
tioned classes are still held in memory. Figure 4.10 shows the constellation of classes
and structs that were used to display a point cloud in the ScanReplayView.

• The class PointCloudMetalView is responsible for processing the camera and sen-
sor data and creating a point cloud from this data with the framework Metal.

• The class PointCloud is responsible for instantiating PointCloudMetalView and
sharing that instance with the ScanReplayView. This allows the ScanReplayView to
access variables and methods from PointCloudMetalView.

51

4 Implementation - Views and Logic

Figure 4.10: Constellation for displaying a point cloud that caused a retain cycle

• To display a Metal view in SwiftUI the struct PointCloudPreview is necessary. It
updates the PointCloudMetalView with new camera and sensor data.

• Inside ScanReplayView there are other views that need access to the pointCloud-
instance. To avoid having to pass that instance as a parameter every time, it is
placed inside the environment, through which the subviews can access this in-
stance.

The combination of passing the PointCloud instance to the environment and the Point-
CloudMetalView instance, inside the PointCloud instance, to PointCloudPreview causes
the problem that the classes PointCloudMetalView and PointCloud are not deinitialized
after the ScanReplayView is closed.

4.8 ScanReplayView

To be able to create a correct and complete 3D model of the scanned head, the user has
to locate certain parts of the head in the scan (as explained in section 3.2). These parts
are the nose tip, nasion, left ear and right ear. The ScanReplayView (�gure 4.9b) is the
place where the user locates these body parts by placing a dot, an annotation, on this
body part.
Like the ScanView, it is made up of a progress bar at the top of the screen, a blue tile with
a textual instruction and button at the bottom. The center of the screen is made up of

52

4 Implementation - Views and Logic

(a) ScanReplayView: Setting an annotation
to the left ear

(b) ScanReplayView: After setting an anno-
tation

the point cloud that is replayed. The text in the blue tile changes depending on the state
of the replay to give the user helpful instructions.

Setting an annotation

To set an annotation, the user has to pause the replay. To simplify the process of setting an
annotation to a speci�c body part, the point cloud can be enlarged with a zoom gesture,
it can be rotated with a drag gesture and can �nally be reset to the default perspective
by double-tapping on the screen.
To set an annotation, the user selects the body part (4.11a) and can then drag over the
screen, as described in the text above the buttons. After moving the annotation and
deselecting the button, he/she sees a visual con�rmation that this annotation was set,
by the green stroke around the button (4.11b).
An annotation can only be set when the frame it was paused in, has enough marker
overlap. To avoid the scenario where the user pauses the replay and ends up in a state
with insu�cient marker overlap, the pause feature waits for that moment and pauses
only then. So it is more like a "pause once the moment is ideal" feature.

4.9 FileView

The FileView o�ers functionality for the following scenarios:

• Delete �les from the iPhone after exporting them.

53

4 Implementation - Views and Logic

(a) FileView (b) FileView in edit mode

(c) FileView con�rm to delete
alert

• One or more �les should be deleted if they were created by accident or just to try
out the scan functionality.

• A �le should be renamed to maybe include the name of the patient.

The FileView (�gure 4.12a) allows the user to rename and delete �les. The �le list dis-
plays all of the �les that the app saved. Tapping the button "Dateien bearbeiten" at the
top left of the screen activates the edit mode (�gure 4.12b). Above the list, two hints are
displayed, which inform the user about the possibilities. Only one �le can be renamed at
a time, whereas one or multiple �les can be deleted at a time. In edit mode the list turns
into a selectable list, meaning that the user can select one or multiple rows from the list.
In the blue tile at the bottom of the screen, there is a rename button and a delete button.
If one �le from the list is selected, both buttons can be tapped. If more than one �le is
selected, the rename button is deactivated.
After tapping the delete button an alert appears (�gure 4.12c) to con�rm the user’s choice
to permanently delete the selected �les.
After tapping the rename button the RenameFileView appears. Once the RenameFile-
View is closed, after a successful rename, the �le list is reloaded.

54

4 Implementation - Views and Logic

How to make a list selectable

Before deleting or renaming a �le, it has to be selected from the list. The FileView uses a
List-element to display all the �les. A SwiftUI list can be divided into sections. In �gure
4.12b there are two sections, one for the hints and one for the �les. Inside the �les sec-
tion a ForEach-loop goes through the array of �lenames and displays them.
The �rst step for achieving the functionality and design to select one or more rows of a
list (�gure 4.12b), is to pass a set of strings to the List-element. This set represents the
current selection of list rows.
Step two is to access an environment value of SwiftUI which is called editMode. The
editMode is either active or inactive. The List-element automatically changes its ap-
pearance once the editMode changes. This mode is toggled by the button at the top-left
of the screen.

4.10 RenameFileView

The RenameFileView (�gure 4.13a) displays the current name of the �le and a text �eld
to enter a new name. Once a new �lename is entered the rename button is activated.
A hint at the top of the screen informs the user about the format of the �lenames so
that he/she does not accidentally destroy the format. After tapping the rename button
a message appears whether the renaming was successful (�gure 4.13b). The Rename-
FileView automatically dismisses itself after three seconds. Listing 4.10 shows how to
execute code after a certain number of seconds.

1 DispatchQueue . main . asyncAfter (dead l ine : . now () + 3 . 0) {
2 // code to execute
3 }

How to rename a file

At �rst a method called rename makes sure that the current �lename exists and that
the new �lename does not exist. This is done by the method fileExists of the class
FileManager. Renaming a �le is achieved by moving the �le to a new location 4.10.

1 t r y Fi leManager . de f au l t . moveItem (at : o r i g i na lPa th , to : ta rgetPath)

55

4 Implementation - Views and Logic

(a) RenameFileView

(b) RenameFileView - rename success mes-
sage

4.11 SettingsView

The SettingsView allows the user to con�gure a few settings that a�ect his/her experi-
ence while scanning.

Setting the number of markers

During scanning or during the replay of a scan, the progress of the scan is shown via
a progress bar and via audio. To correctly calculate the progress, the total number of
markers on the cap must be set.

Setting the increments for the progress feedback

The user can also con�gure the number of increments in which he/she wants to receive
audio-feedback about the scan progress. The options are every 25 percent, every 50
percent or just at 100 percent.

56

4 Implementation - Views and Logic

Figure 4.14: SettingsView

Setting the audio feedback for the positioning

When the position of the iPhone is not ideal during the recording of a scan, the device
will vibrate and this can’t be changed. However, the user can select, if he/she just wants
to get audio feedback when the device is too close to the head or if he/she also wants
to receive instructions in which direction to move the device.

Persisting the user configuration

When the user modi�es a con�guration, it should be permanently saved and not lost
after the app is closed. All the choices that can be con�gured in the SettingsView are
persisted in the UserDefaults storage of the iPhone. UserDefaults is a database where
key-value pairs can be persisted. It is only meant for storing very small amounts of data,

57

4 Implementation - Views and Logic

like the number of markers on a hat. Such values could also be stored in the document
directory. However, it is much more convenient to use UserDefaults for that, especially
in SwiftUI. Only one line of code is necessary to access a value from UserDefaults (4.11).

1 @AppStorage (" markerCountOnHat ") var markerCount : I n t = 57

By assigning a new value to the variable, it is automatically saved.

58

5 Testing and Evaluation

To test and evaluate the features of the app and even more importantly the user expe-
rience of the feedback concept, it is used by a team of physical therapists at Varilag for
four weeks. During that time, an initial feedback about the scan process is collected via
the ScanRatingView, as described in section 4.6. This feedback is collected after every
scan. To get an even better understanding about the pros and cons of the app, an in-
person interview will be conducted with the physical therapists that used the app in the
four weeks. The results of both evaluations will be presented in this section.

5.1 Collected data of the scan ratings

The following questions were asked after every scan:

• How well did the scan go?

• Was the performance of the scan a�ected by the child’s behavior?

• Was the child cooperative?

• How well did the cap �t?

• Did the scan have to be paused because of a sensor heat warning?

• Did visual con�rmation need to be obtained in addition to audible and haptic feed-
back on the screen?

The following feedback con�gurations were also saved in the rating �le:

• Play progress audio only at 100 percent.

• Play progress audio every 50 percent or every 25 percent.

• Play positioning audio only if the device is too close to the infant’s head.

59

5 Testing and Evaluation

allRatings

wasTheChildCooperative progressAudioOnlyWhenFinished howWellDidTheScanGo childBehavioralState progressAudioEvery25 neededToPauseDueToHeatWarning scanAffectedByChildBehaviour visualFeedbackAlsoNeeded howWellDidTheCapFit

0 True True 5 True False 2 False 3

1 True False 3 False False 4 True 4

2 False False 2 restless False False 3 False 2

3 True True 4 True False 1 True 4

4 False True 3 cried True False 1 True 4

5 False True 2 turnedHeadAway True True 5 False 2

6 True False 5 False False 2 False 4

7 True False 3 False False 2 True 2

8 True True 5 True False 1 False 2

True

True

False

True

FalseFalse

True

True

True

1

2

3

4

5

scan rating scan affected by infant behavior cap fit

True = infant was cooperative

False

True

False

True

TrueFalse

False

True

False

1

2

3

4

5

scan rating scan affected by infant behavior cap fit

True = visual feedback was also needed

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

3,556
Mittelwert

howWellDidTheScanGo

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

howWellDidTheScanGo scanAffectedByChildBehaviour
howWellDidTheCapFit

Scan Ratings Part 1

wasTheChildCooperative progressAudioOnlyWhenFinished howWellDidTheScanGo childBehavioralState positionAudioOnlyWhenTooClose

0 True True 5 True

1 True False 3 False

2 False False 2 restless False

3 True True 4 True

4 False True 3 cried True

5 False True 2 turnedHeadAway True

6 True False 5 False

7 True False 3 False

8 True True 5 True

Scan Ratings Part 2

scanAffectedByChildBehaviour visualFeedbackAlsoNeeded howWellDidTheCapFit neededToPauseDueToHeatWarning progressAudioEvery25

0 2 False 3 False True

1 4 True 4 False False

2 3 False 2 False False

3 1 True 4 False True

4 1 True 4 False True

5 5 False 2 True True

6 2 False 4 False False

7 2 True 2 False False

8 1 False 2 False True

1

Figure 5.1: Evaluation of the data collected through the ScanRatingView

Results and evaluation of the scan ratings

Refer to attachment 1 for all the collected data in the ScanRatingView. Nine scan ratings
were collected in total.
Figure 5.1 shows two net diagrams, each displaying the overall scan rating if the scan
was a�ected by the behaviour of the infant and how well the cap with the markers �t on
the head. The diagram on the left puts these metrics in relation to the cooperation of the
infant and on the right in relation to the metric if visual feedback was also needed, i.e. if
the user had to look at the screen.
The diagrams show that when the scan rating was bad (2) the �t of the cap was bad (2)
and the infant was not cooperative. Furthermore, the scan was a�ected by the infant’s
behavior (3 and 5) and visual feedback was not needed (see ratings 2 and 5 in attachment
1). This suggests that the scan was not good because of the infant’s behavior and the �t
of the cap.
When the scan rating was good (4 and 5), the cap �t was in the range of 2 to 4, the scan
was not a�ected by the infant’s behavior (1 and 2), the infant was cooperative and visual
feedback was only needed once (see ratings 0, 3, 6, 8 in attachment 1). Although the
infant was always cooperative, the scan was not a�ected by the infant’s behavior which
suggests that the scan was good because of the app itself and not because of the infant’s
behavior. Unlike bad scans, a good scan does not seem to correlate with how the cap

60

5 Testing and Evaluation

�ts.
However rating 1 (in attachment 1) shows an overall rating of 3 with a �tting cap (4). The
infant was not cooperative, but the scan was not a�ected by the infant’s behavior and
visual feedback was needed which suggests that the scan was mediocre because of the
app itself and not because of the infant or the cap.
Furthermore, in rating 5 (in attachment 1), the scan was rated with a 2 and the infant
was not cooperative as it turned away its head, the user needed to pause the scan due
to a heat warning. As this is the only scan where a heat warning happened a plausible
explanation is that the scan process took longer because the infant turned away its head
all the time.
Lastly, the average scan rating is 3.56. In total there were four very good (ratings of 4 or
5) scans and �ve bad (ratings of 1, 2 or 3) scans.

5.2 Results of the in-person interview

Refer to the appendix 2, 3, 4 and 5 for the notes taken in each interview.
The times the app was used by each physical therapist in the four weeks ranges from
one time by interviewee 4 to about �ve times by interviewee 5. Due to a very tight
schedule, they were only able to use the ScanView, PatientMetaDataView and the Scan-
RatingView. Therefore they were also unable to explore all features of the app. The
content of the interviews is about the scan feedback, how the infant reacted and what
the parents thought.

Positioning feedback

All interviewees agreed that the part of the positioning feedback that provides informa-
tion about the distance to the head via audio, was really helpful and always allowed to
�nd the correct distance.
The opinion about the positioning instructions on how to move the iPhone di�ered. In-
terviewee 2, 3 and 5 found them a little unintuitive and hard to interpret whereas inter-
viewee 4 had no problem at all with them.
For interviewee 3 it sometimes felt like the iPhone was constantly vibrating, but when
looking at the screen the positioning appeared to be �ne. On the other hand, interviewee
5 really liked them.

61

5 Testing and Evaluation

Progress feedback

For interviewee 2 the progress feedback seemed confusing sometimes as it said "done"
although, from the therapist’s personal feeling, the scan could not be done yet. Apart
from that, the feedback about the progress was very positive and interviewee 3 even
said that it was motivational and interesting for the parents.
Interviewees 2 and 4 would have liked it even better if there was feedback at 50% of
the progress, which there is, however, due to the time constraint they were not able to
explore the app and therefore didn’t �nd out about that feature. The same happened
to interviewee 5 who had progress feedback at 50%, but wished to have had it at 25%
increments.

Parents

The parents were very open-minded, motivated and interested. Except for one case with
interviewee 5 they never asked questions about the app or any results. In this one case,
they were wondering where the images, taken of the head of their child, are used. To
make sure that theywere not published anywhere. When the cap didn’t quite �t the head
of their child or their child complained, the parents sometimes became a little nervous.

Infants

Interviewees 4 and 5 mentioned that the infants were sometimes distracted by the dis-
play of the iPhone and turned their heads while the iPhone was moved around them.
Interviewee 4 solved this by making the parents distract their child. Interviewee 5 added
that the vibrations or the audio did not in�uence the child at all.

Cap

All interviewees agreed that the capwas the biggest problem and the cause of a bad scan.
First, all the infants did not like when the cap was put on, which didn’t make the parents
feel any better. Second, interviewees 4 and 5 complained that the cap was too small for
some children and barely closed at the bottom. Third, interviewees 3 and 5 mentioned
that the stickers did not hold well and would often fall o� which caused interviewee 5
not to reach the scan completion in some cases because the number of stickers left on
the cap and the con�gured sticker amount in the SettingsView di�ered. Interviewee 3
also mentioned that the color on the stickers smears.

62

5 Testing and Evaluation

Improvements

Both interviewee 2 and 3 agreed that an improvement would be to include a feature that
reminds the app operator to speci�cally scan the nose and ears at the end of the scan.
Even better would be a feature that detects if the ears and nose are properly captured in
the scan.
Interviewee 2 would �nd it more intuitive if the positioning instructions (for example
"left-up") were replaced by instructions about which part of the head is not properly
scanned yet. Interviewee 3 would �nd it more intuitive if a positioning instruction like
"left-up" means that the head of the infant should move to the top left in the camera
instead of the iPhone itself.
Lastly, interviewee 2would prefer amore descriptive picture in the PatientMetaDataView
instead of just for example "Diagonal A".

5.3 Combining the ScanRatingView data and the interviews

The evaluation of the rating data captured in the ScanRatingView still allowed for multi-
ple di�erent interpretations, for example, about the causes of a bad scan rating. These
interpretations can now be augmented with the content of the interviews.
The interviews con�rmed the assumption that a bad scan was mostly due to the �t of
the cap or the stickers not holding properly.
They also con�rmed that a scan could still be good even though the cap �t might not be
ideal.
Additionally, a scanwith hard-to-follow positioning instructions, because at the time they
seemed non-intuitive, can alsoworsen the overall scan rating, even though the cap �t was
okay and the infant behaved well.

63

6 Conclusion and Outlook

6.1 Conclusion

In this thesis, a technical prototype was developed into a ready-to-use app that allows
physical therapists to create scans of the heads of infants and it proved its capabilities in
a real-life setting.
By using information extracted from markers on the cap that an infant is wearing during
the scan in combination with depth data captured by the TrueDepth camera system, the
app is able to create feedback both about the progress of a scan and the positioning of
the iPhone with respect to the infant’s head. This feedback is provided to the user by
using haptic and audible feedback mechanisms, which allow the user to capture a high
quality scan despite the inability to properly see the point cloud on the screen.
In a real-life therapy setting, physical therapists then tested this concept and its imple-
mentation. After every scan, they were questioned about the scan experience and its
circumstances inside the app and after four weeks of testing, interviews were conducted
to further explore the highlights and improvement factors. This showed that the position-
ing feedback about the distance from the head was very e�ective at helping all therapists
to correct their position. Meanwhile, the positioning instructions on where to move the
device in a two-dimensional way were only partially e�ective, as they were sometimes
conceived as di�cult to realize and took more practice.
Overall an easy-to-use interface was achieved by focusing on the principle of only show-
ing elements on the screen which are relevant to the user at this particular moment and
following a coherent design throughout the app. This, however, could only be tested by
the physical therapists for the parts of the app that are necessary to create a scan due to
their tight schedule. The scan process and user experience were perceived as intuitive
and therefore easy to use which was a key objective of this work.

64

6 Conclusion and Outlook

6.2 Outlook

For a future version, the next step is to improve the cap and extend the app with the
functionality to calculate the CVAI on-device. With an improved cap, the data collection
becomes easier and the infants might bemore comfortable wearing it. The collected data
is used to further train an AI.
This data could �rst be used to automatically detect if the ears and the nose are scanned
which will improve the feedback. The app, with improved feedback, the ability to reliably
calculate the CVAI combined with an improved cap would allow parents to use it.
Afterwards, once enough data is collected, the trained AI can be used to allow a future
version of the app to take scans without needing the child to wear a cap with markers
on it. This version would mark the goal of the research project "InferMod3D", which is
to develop an app that can be used by both parents and physical therapists to scan an
infant’s head and calculate the CVAI with just an iPhone.

65

Bibliography

[1] Kharchyshyn Andrew et al.Metal Tutorial: Getting Started | raywenderlich.com. Oct.
2018. URL: https://www.raywenderlich.com/7475-metal-tutorial-getting-
started (visited on 05/31/2022).

[2] AppleInsider. Face ID | iPhone, iPad, Masks. URL: https://appleinsider.com/
inside/face-id (visited on 04/01/2022).

[3] Myagkov Artem, Feicho Eduard, and Nicholson Steve. OpenCV: Installation in iOS.
URL: https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html
(visited on 04/01/2022).

[4] Inés Barbero-García, José Luis Lerma, and Gaspar Mora-Navarro. “Fully automatic
smartphone-based photogrammetric 3Dmodelling of infant’s heads for cranial de-
formation analysis”. In: ISPRS Journal of Photogrammetry and Remote Sensing 166
(Aug. 2020), pp. 268–277. ISSN: 0924-2716. DOI: 10.1016/J.ISPRSJPRS.2020.
06.013. (Visited on 03/28/2022).

[5] Andreas Breitbarth et al. “Measurement accuracy and dependence on external in-
�uences of the iPhoneXTrueDepth sensor”. In: (Sept. 2019), p. 7. ISSN: 1996756X.
DOI: 10.1117/12.2530544. (Visited on 04/01/2022).

[6] Pinckney Donald.Metal 3D Graphics Part 1: Basic Rendering | Donald Pinckney. July
2018. URL: https://donaldpinckney.com/metal/2018/07/05/metal-intro-
1.html (visited on 05/31/2022).

[7] Apple Inc. Automatic Reference Counting — The Swift Programming Language (Swift
5.6). URL: https://docs.swift.org/swift-book/LanguageGuide/AutomaticRe
ferenceCounting.html (visited on 04/27/2022).

[8] Apple Inc. AVAudioSession | Apple Developer Documentation. URL: https : / / de
veloper . apple . com / documentation / avfaudio / avaudiosession (visited on
04/25/2022).

[9] Apple Inc. AVFoundation Overview - Apple Developer. URL: https://developer.
apple.com/av-foundation/ (visited on 06/20/2022).

66

https://www.raywenderlich.com/7475-metal-tutorial-getting-started
https://www.raywenderlich.com/7475-metal-tutorial-getting-started
https://appleinsider.com/inside/face-id
https://appleinsider.com/inside/face-id
https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html
https://doi.org/10.1016/J.ISPRSJPRS.2020.06.013
https://doi.org/10.1016/J.ISPRSJPRS.2020.06.013
https://doi.org/10.1117/12.2530544
https://donaldpinckney.com/metal/2018/07/05/metal-intro-1.html
https://donaldpinckney.com/metal/2018/07/05/metal-intro-1.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://developer.apple.com/av-foundation/
https://developer.apple.com/av-foundation/

Bibliography

[10] Apple Inc. AVSpeechSynthesisVoice | Apple Developer Documentation. URL: https:
//developer.apple.com/documentation/avfaudio/avspeechsynthesisvoice
(visited on 06/27/2022).

[11] Apple Inc. AVSpeechSynthesizer | Apple Developer Documentation. URL: https://
developer.apple.com/documentation/avfaudio/avspeechsynthesizer (visited
on 06/14/2022).

[12] Apple Inc. AVSpeechUtterance | Apple Developer Documentation. URL: https://
developer.apple.com/documentation/avfaudio/avspeechutterance (visited
on 06/27/2022).

[13] Apple Inc. body | Apple Developer Documentation. URL: https://developer.a
pple.com/documentation/SwiftUI/View/body- swift.property (visited on
04/11/2022).

[14] Apple Inc. CHHapticEngine | Apple Developer Documentation. URL: https://dev
eloper.apple.com/documentation/corehaptics/chhapticengine (visited on
04/25/2022).

[15] Apple Inc. Core Haptics | Apple Developer Documentation. URL: https://develope
r.apple.com/documentation/corehaptics (visited on 06/27/2022).

[16] Apple Inc. dismiss(). URL: https://developer.apple.com/documentation/swift
ui/presentationmode/dismiss() (visited on 06/23/2022).

[17] Apple Inc. fullScreenCover(isPresented:onDismiss:content:) | Apple Developer Docu-
mentation. URL: https://developer.apple.com/documentation/swiftui/form/
fullscreencover(ispresented:ondismiss:content:) (visited on 06/23/2022).

[18] Apple Inc. Input and Event Modi�ers | Apple Developer Documentation. URL: https:
//developer.apple.com/documentation/swiftui/view-input-and-events
(visited on 04/11/2022).

[19] Apple Inc. Managing Model Data in Your App. URL: https://developer.apple.
com/documentation/swiftui/managing-model-data-in-your-app (visited on
04/11/2022).

[20] Apple Inc.Metal Enhancements for A13 Bionic - Tech Talks - Videos - Apple Developer.
URL: https://developer.apple.com/videos/play/tech-talks/608/ (visited
on 03/14/2022).

[21] Apple Inc. Metal Overview - Apple Developer. URL: https://developer.apple.
com/metal/ (visited on 06/15/2022).

67

https://developer.apple.com/documentation/avfaudio/avspeechsynthesisvoice
https://developer.apple.com/documentation/avfaudio/avspeechsynthesisvoice
https://developer.apple.com/documentation/avfaudio/avspeechsynthesizer
https://developer.apple.com/documentation/avfaudio/avspeechsynthesizer
https://developer.apple.com/documentation/avfaudio/avspeechutterance
https://developer.apple.com/documentation/avfaudio/avspeechutterance
https://developer.apple.com/documentation/SwiftUI/View/body-swift.property
https://developer.apple.com/documentation/SwiftUI/View/body-swift.property
https://developer.apple.com/documentation/corehaptics/chhapticengine
https://developer.apple.com/documentation/corehaptics/chhapticengine
https://developer.apple.com/documentation/corehaptics
https://developer.apple.com/documentation/corehaptics
https://developer.apple.com/documentation/swiftui/presentationmode/dismiss()
https://developer.apple.com/documentation/swiftui/presentationmode/dismiss()
https://developer.apple.com/documentation/swiftui/form/fullscreencover(ispresented:ondismiss:content:)
https://developer.apple.com/documentation/swiftui/form/fullscreencover(ispresented:ondismiss:content:)
https://developer.apple.com/documentation/swiftui/view-input-and-events
https://developer.apple.com/documentation/swiftui/view-input-and-events
https://developer.apple.com/documentation/swiftui/managing-model-data-in-your-app
https://developer.apple.com/documentation/swiftui/managing-model-data-in-your-app
https://developer.apple.com/videos/play/tech-talks/608/
https://developer.apple.com/metal/
https://developer.apple.com/metal/

Bibliography

[22] Apple Inc.NavigationView | AppleDeveloperDocumentation. URL: https://develop
er.apple.com/documentation/swiftui/navigationview (visited on 04/11/2022).

[23] Apple Inc. PresentationMode. URL: https://developer.apple.com/documentati
on/swiftui/presentationmode (visited on 06/23/2022).

[24] Apple Inc. ProcessInfo.ThermalState | Apple Developer Documentation. URL: https:
//developer.apple.com/documentation/foundation/processinfo/thermalst
ate (visited on 06/06/2022).

[25] Apple Inc. sheet(isPresented:onDismiss:content:) | Apple Developer Documentation.
URL: https://developer.apple.com/documentation/SwiftUI/View/sheet(is
Presented:onDismiss:content:) (visited on 06/27/2022).

[26] Apple Inc. State | Apple Developer Documentation. URL: https://developer.appl
e.com/documentation/swiftui/state (visited on 04/11/2022).

[27] Apple Inc. StreamingDepthData from the TrueDepth Camera | Apple Developer Docu-
mentation. URL: https://developer.apple.com/documentation/avfoundation/
cameras_and_media_capture/streaming_depth_data_from_the_truedepth_
camera (visited on 03/11/2022).

[28] Apple Inc. SwiftUI Overview - Xcode - Apple Developer. URL: https://developer.
apple.com/xcode/swiftui/ (visited on 06/13/2022).

[29] Apple Inc. UIKit | Apple Developer Documentation. URL: https://developer.appl
e.com/documentation/uikit (visited on 06/27/2022).

[30] Apple Inc. UIViewControllerRepresentable | Apple Developer Documentation. URL: h
ttps://developer.apple.com/documentation/swiftui/uiviewcontrollerrep
resentable (visited on 06/27/2022).

[31] Apple Inc. UIViewRepresentable | Apple Developer Documentation. URL: https://
developer.apple.com/documentation/swiftui/uiviewrepresentable (visited
on 06/27/2022).

[32] Apple Inc. Updating Continuous and Transient Haptic Parameters in Real Time | Apple
Developer Documentation. URL: https://developer.apple.com/documentation/
corehaptics/updating_continuous_and_transient_haptic_parameters_in_
real_time (visited on 03/29/2022).

[33] Apple Inc. Using a Render Pipeline to Render Primitives | Apple Developer Documen-
tation. URL: https://developer.apple.com/documentation/metal/using_a_
render_pipeline_to_render_primitives (visited on 05/31/2022).

68

https://developer.apple.com/documentation/swiftui/navigationview
https://developer.apple.com/documentation/swiftui/navigationview
https://developer.apple.com/documentation/swiftui/presentationmode
https://developer.apple.com/documentation/swiftui/presentationmode
https://developer.apple.com/documentation/foundation/processinfo/thermalstate
https://developer.apple.com/documentation/foundation/processinfo/thermalstate
https://developer.apple.com/documentation/foundation/processinfo/thermalstate
https://developer.apple.com/documentation/SwiftUI/View/sheet(isPresented:onDismiss:content:)
https://developer.apple.com/documentation/SwiftUI/View/sheet(isPresented:onDismiss:content:)
https://developer.apple.com/documentation/swiftui/state
https://developer.apple.com/documentation/swiftui/state
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/streaming_depth_data_from_the_truedepth_camera
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/streaming_depth_data_from_the_truedepth_camera
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/streaming_depth_data_from_the_truedepth_camera
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/swiftui/uiviewcontrollerrepresentable
https://developer.apple.com/documentation/swiftui/uiviewcontrollerrepresentable
https://developer.apple.com/documentation/swiftui/uiviewcontrollerrepresentable
https://developer.apple.com/documentation/swiftui/uiviewrepresentable
https://developer.apple.com/documentation/swiftui/uiviewrepresentable
https://developer.apple.com/documentation/corehaptics/updating_continuous_and_transient_haptic_parameters_in_real_time
https://developer.apple.com/documentation/corehaptics/updating_continuous_and_transient_haptic_parameters_in_real_time
https://developer.apple.com/documentation/corehaptics/updating_continuous_and_transient_haptic_parameters_in_real_time
https://developer.apple.com/documentation/metal/using_a_render_pipeline_to_render_primitives
https://developer.apple.com/documentation/metal/using_a_render_pipeline_to_render_primitives

Bibliography

[34] Apple Inc. View | Apple Developer Documentation. URL: https://developer.appl
e.com/documentation/swiftui/view (visited on 06/27/2022).

[35] Apple Inc. Xcode 14 Overview - Apple Developer. URL: https://developer.apple.
com/xcode/ (visited on 06/27/2022).

[36] Bok Ki Jung and In Sik Yun. “Diagnosis and treatment of positional plagiocephaly”.
In: Archives of Craniofacial Surgery 21 (2 2020), p. 80. ISSN: 22875603. DOI: 10.
7181/ACFS.2020.00059. URL: /labs/pmc/articles/PMC7206465/%20/labs/pmc/
articles/PMC7206465/?report=abstract%20https://www.ncbi.nlm.nih.gov/
labs/pmc/articles/PMC7206465/ (visited on 03/11/2022).

[37] Chamary JV. How Face ID Works On iPhone X. Sept. 2017. URL: https://www.
forbes.com/sites/jvchamary/2017/09/16/how- face- id- works- apple-
iphone-x/?sh=474d66cc624d (visited on 04/01/2022).

[38] OpenCV.About -OpenCV. URL: https://opencv.org/about/ (visited on 04/13/2022).

[39] Hudson Paul. All SwiftUI property wrappers explained and compared - a free SwiftUI
by Example tutorial. 2021. URL: https://www.hackingwithswift.com/quick-
start/swiftui/all-swiftui-property-wrappers-explained-and-compared
(visited on 04/11/2022).

[40] Fabian Rapp, Samuel Zeitvogel, andChristianWernet. ISRG / InferMod3D/ InferMod3D-
Recorder · GitLab. May 2022. URL: https://iz-gitlab-01.hs-karlsruhe.de/is
rg/infermod3d/infermod3d-recorder/-/tree/master (visited on 06/20/2022).

[41] Varilag. Plagiocephalus: Ursachen, Spätfolgen& Behandlung von Plagiozephalie. 2022.
URL: https://www.varilag.de/ratgeber/plagiocephalus/ (visited on 03/15/2022).

[42] Maximilian Vogt, Adrian Rips, and Claus Emmelmann. “Comparison of iPad Pro®’s
LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution”. In:
Technologies 9 (2 Apr. 2021), p. 25. DOI: 10.3390/TECHNOLOGIES9020025. (Visited
on 04/01/2022).

[43] Samuel Zeitvogel et al. “RGBD Infant Head Reconstruction for Cranial Vault Asym-
metry Estimation”. In: IEEE Access 10 (2022), pp. 36208–36219. ISSN: 21693536.
DOI: 10.1109/ACCESS.2022.3160749. (Visited on 05/30/2022).

69

https://developer.apple.com/documentation/swiftui/view
https://developer.apple.com/documentation/swiftui/view
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://doi.org/10.7181/ACFS.2020.00059
https://doi.org/10.7181/ACFS.2020.00059
https://www.forbes.com/sites/jvchamary/2017/09/16/how-face-id-works-apple-iphone-x/?sh=474d66cc624d
https://www.forbes.com/sites/jvchamary/2017/09/16/how-face-id-works-apple-iphone-x/?sh=474d66cc624d
https://www.forbes.com/sites/jvchamary/2017/09/16/how-face-id-works-apple-iphone-x/?sh=474d66cc624d
https://opencv.org/about/
https://www.hackingwithswift.com/quick-start/swiftui/all-swiftui-property-wrappers-explained-and-compared
https://www.hackingwithswift.com/quick-start/swiftui/all-swiftui-property-wrappers-explained-and-compared
https://iz-gitlab-01.hs-karlsruhe.de/isrg/infermod3d/infermod3d-recorder/-/tree/master
https://iz-gitlab-01.hs-karlsruhe.de/isrg/infermod3d/infermod3d-recorder/-/tree/master
https://www.varilag.de/ratgeber/plagiocephalus/
https://doi.org/10.3390/TECHNOLOGIES9020025
https://doi.org/10.1109/ACCESS.2022.3160749

Attachments

1 Rating data collected through the ScanRatingView

al
lR

at
in

gs

w
as

Th
eC

hi
ld
C
oo

pe
ra
tiv

e
pr
og

re
ss

Au
di
oO

nl
yW

he
nF

in
is
he

d
ho

w
W
el
lD
id
Th

eS
ca

nG
o

ch
ild

Be
ha

vi
or
al
St

at
e

pr
og

re
ss

Au
di
oE

ve
ry
25

ne
ed

ed
To

Pa
us

eD
ue

To
H
ea

tW
ar
ni
ng

sc
an

Aff
ec

te
dB

yC
hi
ld
Be

ha
vi
ou

r
cu

st
om

C
hi
ld
Be

ha
vi
or
al
St

at
e

vi
su

al
Fe

ed
ba

ck
Al
so

N
ee

de
d

ho
w
W
el
lD
id
Th

eC
ap

Fi
t

po
si
tio

nA
ud

io
O
nl
yW

he
nT

oo
C
lo
se

0
Tr

ue
Tr

ue
5

Tr
ue

Fa
ls

e
2

Fa
ls

e
3

Tr
ue

1
Tr

ue
Fa

ls
e

3
Fa

ls
e

Fa
ls

e
4

Tr
ue

4
Fa

ls
e

2
Fa

ls
e

Fa
ls

e
2

re
st

le
ss

Fa
ls

e
Fa

ls
e

3
Fa

ls
e

2
Fa

ls
e

3
Tr

ue
Tr

ue
4

Tr
ue

Fa
ls

e
1

Tr
ue

4
Tr

ue

4
Fa

ls
e

Tr
ue

3
cr

ie
d

Tr
ue

Fa
ls

e
1

Tr
ue

4
Tr

ue

5
Fa

ls
e

Tr
ue

2
tu

rn
ed

H
ea

dA
w

ay
Tr

ue
Tr

ue
5

Fa
ls

e
2

Tr
ue

6
Tr

ue
Fa

ls
e

5
Fa

ls
e

Fa
ls

e
2

Fa
ls

e
4

Fa
ls

e

7
Tr

ue
Fa

ls
e

3
Fa

ls
e

Fa
ls

e
2

Tr
ue

2
Fa

ls
e

8
Tr

ue
Tr

ue
5

Tr
ue

Fa
ls

e
1

Fa
ls

e
2

Tr
ue

Tr
ue

Tr
ue

Fa
ls

e

Tr
ue

Fa
ls

e
Fa

ls
e

Tr
ue

Tr
ue

Tr
ue

012345

sc
an

 ra
tin

g
sc

an
 a
ffe

ct
ed

 b
y

in
fa

nt
 b

eh
av

io
r

ca
p

fit

Tr
u
e
 =

 in
fa

n
t

w
a
s

c
o
o
p

e
ra

tiv
e

Fa
ls

e

Tr
ue

Fa
ls

e

Tr
ue

Tr
ue

Fa
ls

e

Fa
ls

e

Tr
ue

Fa
ls

e

012345

sc
an

 ra
tin

g
sc

an
 a
ffe

ct
ed

 b
y

in
fa

nt
 b

eh
av

io
r

ca
p

fit

Tr
u
e
 =

 v
is

u
a
l f

e
e
d

b
a
c
k

w
a
s

a
ls

o
 n

e
e
d

e
d

12345

0
1

2
3

4
5

6
7

8

3,
55

6
M

itt
el

w
er

t

ho
w

W
el

lD
id

Th
eS

ca
nG

o

012345

0
1

2
3

4
5

6
7

8

ho
w

W
el

lD
id

Th
eS

ca
nG

o
sc

an
Aff

ec
te

dB
yC

hi
ld

Be
ha

vi
ou

r
ho

w
W

el
lD

id
Th

eC
ap

Fi
t

Sc
an

 R
at

in
gs

 P
ar

t 1

w
as

Th
eC

hi
ld
C
oo

pe
ra
tiv

e
pr
og

re
ss

Au
di
oO

nl
yW

he
nF

in
is
he

d
ho

w
W
el
lD
id
Th

eS
ca

nG
o

ch
ild

Be
ha

vi
or
al
St

at
e

po
si
tio

nA
ud

io
O
nl
yW

he
nT

oo
C
lo
se

0
Tr

ue
Tr

ue
5

Tr
ue

1
Tr

ue
Fa

ls
e

3
Fa

ls
e

2
Fa

ls
e

Fa
ls

e
2

re
st

le
ss

Fa
ls

e

3
Tr

ue
Tr

ue
4

Tr
ue

4
Fa

ls
e

Tr
ue

3
cr

ie
d

Tr
ue

5
Fa

ls
e

Tr
ue

2
tu

rn
ed

H
ea

dA
w

ay
Tr

ue

6
Tr

ue
Fa

ls
e

5
Fa

ls
e

7
Tr

ue
Fa

ls
e

3
Fa

ls
e

8
Tr

ue
Tr

ue
5

Tr
ue

Sc
an

 R
at

in
gs

 P
ar

t 2

sc
an

Aff
ec

te
dB

yC
hi
ld
Be

ha
vi
ou

r
vi
su

al
Fe

ed
ba

ck
Al
so

N
ee

de
d

ho
w
W
el
lD
id
Th

eC
ap

Fi
t

ne
ed

ed
To

Pa
us

eD
ue

To
H
ea

tW
ar
ni
ng

pr
og

re
ss

Au
di
oE

ve
ry
25

0
2

Fa
ls

e
3

Fa
ls

e
Tr

ue

1
4

Tr
ue

4
Fa

ls
e

Fa
ls

e

2
3

Fa
ls

e
2

Fa
ls

e
Fa

ls
e

3
1

Tr
ue

4
Fa

ls
e

Tr
ue

4
1

Tr
ue

4
Fa

ls
e

Tr
ue

5
5

Fa
ls

e
2

Tr
ue

Tr
ue

6
2

Fa
ls

e
4

Fa
ls

e
Fa

ls
e

7
2

Tr
ue

2
Fa

ls
e

Fa
ls

e

8
1

Fa
ls

e
2

Fa
ls

e
Tr

ue

1

Figure 1: All the scan ratings from the quantitative testing in the ScanRatingView.

70

Attachments

2 Notes from the physical therapist interview 1

Anzahl erstellter Scans: 2
Positionierungsfeedback:

• Audio “zu nah” war sehr hilfreich und nützlich

• Positionierungsinstruktionen waren schwierig zu befolgen

Fortschrittsfeedback:

• Audio “fertig” war manchmal verwirrend, da der Scan gefühlsmäßig noch nicht fer-
tig war

• Nach demScan Rückmeldungwie gut der Scanwar (sind alle Körperteile aufgenom-
men worden?) wäre hilfreich, um gegenenfalls aus Fehlern zu lernen

• Audio “50” wäre hilfreich gewesen

Eltern: Waren sehr interessiert
Mütze: Das Aufziehen der Mütze hat Kindern nicht gefallen
Sonstiges: Keine Zeit gehabt, um die App zu erforschen
Verbesserungsfeedback:

• Anstatt Postionierungsinstruktionen “links-oben”, “rechts”, . . . ansagen welcher Teil
des Kopfes noch nicht passt

• PatientMetaDataView: Diagonale A und B des Kopfes verwechselt, trotz Bild mit
Beschriftung. Diagonale A: links vorne nach rechts hinten, wäre besser

• Erinnerung am Ende des Scans die Ohren abzu�lmen

3 Notes from the physical therapist interview 2

Positionierungsfeedback:

• Audio “zu nah” war sehr gut

• Manchmal gab es das Gefühl als würde das Gerät ständig vibrieren

• Positionierungsangaben waren unintuitiv

Fortschrittsfeedback:

71

Attachments

• Fortschrittsangabe war auch für die Eltern sehr hilfreich und motivierend

• Bevorzugte Inkremente: Audioausgabe bei 50% und bei 100%

Eltern:

• Geduld der Eltern ca. 1:30 - 2:00 Minuten. Wurde weniger, wenn Kind unruhig
wurde

• Waren sehr motiviert

Mütze: Die Mütze war das Problem, die Sticker verschmieren und lösen sich
Sonstiges:

• Kam ohne Bildschirm besser zurecht als auf den Bildschirm zu schauen

• Viel besser als erwartet

• App war allgemein intuitiv

• Zeit ist das Problem, vor allem, wenn bei einem Scan noch Annotationen gesetzt
werden müssen

Verbesserungsfeedback:

• Positionierungsinstruktionen nicht wohin das iPhone bewegt werden soll, sondern
wohin der Kopf bewegt werden muss

• Hinweis am Ende des Scans, ob die Ohren und die Nase richtig im Scan sind

4 Notes from the physical therapist interview 2

Anzahl erstellter Scans: 1
Positionierungsfeedback:

• Positionierungsangaben waren intuitiv

Fortschrittsfeedback:

• Zwischendruch wurde auf den Fortschrittsbalken geschaut

• Audio “50” wäre hilfreich gewesen

72

Attachments

Kind: Das Kind hat dem iPhone hinterhergeschaut. Wenn Eltern das Kind abgelenkt
haben, war das kein Problem mehr
Eltern:

• Waren aufgeschlossen

• Von keinem kam die Frage was jetzt das Resultat des Scans ist

Mütze: Die Mütze war zu klein, ging kaum zu
Sonstiges:

• Der Scan ging sehr schnell, wenig Probleme

• App ist gut erklärt, gut verständlich

Verbesserungsfeedback: -

5 Notes from the physical therapist interview 2

Anzahl erstellter Scans: ca. 5
Positionierungsfeedback:

• Ganz wenige Probleme

• Musste wenig bis gar nicht auf den Bildschirm schauen

• Audio “zu nah” war sehr gut. Hat bei den ersten Scans sehr geholfen den richtigen
Abstand zu �nden

• Vibrationen waren sehr gut

• Positionierungsangaben waren schwierig, ein wenig unintuitiv

• Einfärben der Marker im Scan war klasse

Fortschrittsfeedback:

• 100

• 50

• Kleinere Inkremente wären besser gewesen (alle 25

73

Attachments

Kind: Vibrationen oder Audioausgaben haben kein Kind beein�usst. Nur das leuchtende
Display hat Kinder abgelenkt
Eltern:

• Waren durchweg positiv gestimmt

• Sehr aufgeschlossen, begeistert

• Haben die Nutzung von den Bildern erfragt. Datenschutz wichtig

• Mütze war für Eltern eine Hürde. Die App alleine war kein Problem

• Messdaten wie CVAI wären für die Eltern interessant

• Eltern wollten die Messung nicht sehen

Mütze:

• Sehr schlecht

• Mütze aufziehen war für Kinder schlimm

• Aufkleber haben nicht gut gehalten

• Mütze war zu klein

• Schlechter Scan lag an der Mütze

Sonstiges:

• Scanwar in früherer Version sehr lange. In dieser Version ging der Scan sehr schnell

• Zusätzlich Bewertungen nach dem Scan zu geben, war zeitlich herausfordernd

• Scan in der Behandlung unterzubringen, wäre gar kein Problem

Verbesserungsfeedback: -

74

	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Relevance and Importance
	1.4 Objective and Research Question
	1.5 Overview of the Structure

	2 Basics
	2.1 SwiftUI
	2.2 Metal
	2.3 Functionality of the TrueDepth camera system
	2.4 Inclusion of OpenCV in an iOS Xcode Project

	3 Setup and Concept
	3.1 Prerequisites
	3.2 Preconditions
	3.3 User Experience Concept
	3.4 Usage Scenario

	4 Implementation - Views and Logic
	4.1 What all views have in common
	4.2 HomeView
	4.3 ScanInstructionsView
	4.4 ScanView
	4.5 PatientMetaDataView
	4.6 ScanRatingView
	4.7 ScanReplaySelectionView
	4.8 ScanReplayView
	4.9 FileView
	4.10 RenameFileView
	4.11 SettingsView

	5 Testing and Evaluation
	5.1 Collected data of the scan ratings
	5.2 Results of the in-person interview
	5.3 Combining the ScanRatingView data and the interviews

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	Bibliography
	Attachments
	1 Rating data collected through the ScanRatingView
	2 Notes from the physical therapist interview 1
	3 Notes from the physical therapist interview 2
	4 Notes from the physical therapist interview 2
	5 Notes from the physical therapist interview 2

