

Tackling Key Challenges of AI Development – Insights from an Industry-Academia Collaboration

Alexander Melde¹, Manay Madan³, Paul Gavrikov², David Hoof², Astrid Laubenheimer¹, Janis Keuper², and Christoph Reich³ ¹Karlsruhe University of Applied Sciences, ²Offenburg University, ³Furtwangen University

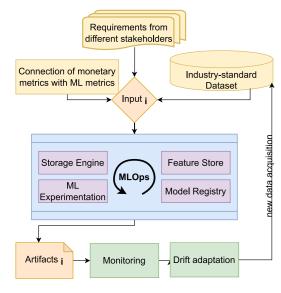
MOTIVATION

Harnessing the overall benefits of the latest advancements in artificial intelligence (AI) requires extensive collaborations of academia and industry - promoting innovation and growth while enforcing the practical usefulness of newer technologies in real life.

Challenges faced during these crosscollaborations are inspected with the help of the project Q-AMeLiA*, in which three universities cooperate with five industry partners to make the product risk of AI-based products visible. The transformation of machine learning (ML) from academia to industry should be robust, simple and safe.

While big companies hire their own research teams, small and medium enterprises often rely on these cooperations in order to successfully adopt AI in their businesses.

FIGURE 1: MLOps Workflow



GENERAL CHALLENGES

VARYING MINDSETS & CONFLICTS OF INTEREST

- different backgrounds and objectives
- standardization of concepts vs. algorithm breakthroughs
- uncertain return of investment for longterm research projects

OWNERSHIP OF INTELLECTUAL PROPERTY AND LEGAL REQUIREMENTS

- commerciality & open sourcing
- difference in regulations when results from academia shall be used in industry, e.g. for dataset licensing

DATA QUALITY AND QUANTITY

- good data vs. big data
- domain shift

OVERCHOICE IN SOURCE MODELS

variety of pretrained models

INTEGRATION IN LEGACY SYSTEMS

- interoperability & efficiency
- choosing deployment infrastructure

ETHICAL CONCERNS

- fairness vs. short-term business value ٠
- minimizing bias, ensuring explainability

TECHNICAL CHALLENGES

- lack of mature MLOps frameworks •
- lack of uniformity in cloud solutions
- lack of common standards and metrics
- memory and resource limitations
- deployment & transferability
- gap in documentation between research and applied machine learning (ML)

DOMAIN SPECIFIC CHALLENGES

VISION-BASED ANOMALY DETECTION

- data versioning for images
- image quality estimation metrics
- occurrence of drifts •
- lack of domain knowledge integration
- different spatial scales & aspect ratios
- speed vs. real-time dilemma

HARDWARE BENCHMARKING FOR ML

- lack of industry representative data
- lack of representative benchmarks •
- lack of uniform metrics in benchmarks
- rapid growth

•

- domain dependency (task, dataset, ...)
- scalability after hardware selection

CONTINUAL LEARNING UNDER DRIFT

- requirement of adaptable framework
- occurrence of drifts
- hyperparameter adaption (zero shot AutoML)
- catastrophic forgetting

INDUSTRIAL PROCESS AUTOMATION

- humongous unlabeled data (data collection)
- data quality estimation
- requirement of adaptable framework
- occurrence of drifts
- hyperparameter adaption (zero shot • AutoML)
- interoperability challenges

SITUATION ANALYSIS (IN HEALTH CARE)

- video quality & camera conditions •
- data collection & content complexity
- inconsistent definition of classes
- lack of mature framework •
- occurrence of drifts
- lack of representative benchmarks

GENERAL SOLUTIONS

- try to identify common interests
- track bottlenecks in ML workflows continual improvement in production
- regulate AI systems to tackle ethica ٠ concerns
- encourage bi-directional exchange talents between universities and industry
- identify new research directions and curriculums of universities based of problems encountered in the indus
- train students how to tackle applied world challenges based on both knowledge learned in the industry theoretical foundations.
- develop domain specific solutions v the help of industrial partners expe

AUTOMATION, MLOPS & DRIFT ADAPT

- perform tests and update deployed models continuously to counter drift e.g. via automated MLOps workflow (see figure 1)
- introduce tests and CI/CD patterns to increase scalability and reliability

(Banneta			Computer Vision Searchengine			Hochschul offenburg.u	le Offenburg Market Market Indexes	-IKA MARKA	FU
		10			•••-		Search:		
Name ↑	Task 👔	Visual Category ↑↓	Training Dataset(s)	î↓	Min. Resolution ↑↓	License 🌐	Parameters 🌐	Filesize 🌐	↑↓
Addepalli2021Towards_PARN18 corruptions ifar100	Classification	natural	cifar100			custom	NaN	NaN	0
Addepalli2021Towards_PARN18 Linf cifar100	Classification	natural	cifar100			custom	NaN	NaN	0
Addepalli2021Towards_RN18 Linf cifar10	Classification	natural	cifar10			custom	NaN	NaN	0
Addepalli2021Towards_WRN34 corruptions ifar100	Classification	natural	cifar100			custom	NaN	NaN	
Addepalli2021Towards_WRN34 Linf cifar100	Classification	natural	cifar100			custom	NaN	NaN	0
adv_inception_v3	Classification	natural	imagenet1k			apache-2.0	23.8 million	90.88MB	0
alexnet	Classification	natural	imagenet1k		95 x 95 px	bsd-3- clause	61.1 million	233.08MB	
alexnet	Classification	None	untrained			bsd-3- clause	NaN	NaN	8

* This work was funded by the Ministry of Science, Research and Arts of Baden-Württemberg (MWK) as part of the project "Quality Assurance of Machine Learning Applications" (Q-AMeLiA).

PROPOSED SOLUTIONS

	DATA COLLECTION & QUALITY ESTIMATION
	• introduce integrity checks to prove data
for	is still in a known distribution
ion	 detect outliers and handle missing values
al	• define what good data is in your use case
	• involve domain expertise for higher
of	quality labels, extend feedback loops
	between annotators and experts
	 observe and track labeling mistakes
nd	• evaluate the quality of your dataset on
n	multiple dimensions (technical & ethical)
stry	
d real	Q-AMELIA SEARCH ENGINE
	apply transfer learning to improve model
and	quality without requiring further data
	use tools to help discover appropriate
with	pretrained models, e.g. the Q-AMeLiA
ertise	search engine developed during this
	work (see figure 2)
d	
ifts,	🤗 Open Q-AMeLiA Search Engine >)
WS	

View Full-text article

FIGURE 2: Q-AMeLiA Search Engine